Spaces:
Running
Running
File size: 17,314 Bytes
13580fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT
import os
import lmdb, tqdm
import cv2
import numpy as np
import argparse
import shutil
import sys
from PIL import Image
import random
import io
import xmltodict
import html
from sklearn.decomposition import PCA
import math
from tqdm import tqdm
from itertools import compress
import glob
def checkImageIsValid(imageBin):
if imageBin is None:
return False
imageBuf = np.fromstring(imageBin, dtype=np.uint8)
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
imgH, imgW = img.shape[0], img.shape[1]
if imgH * imgW == 0:
return False
return True
def writeCache(env, cache):
with env.begin(write=True) as txn:
for k, v in cache.items():
if type(k) == str:
k = k.encode()
if type(v) == str:
v = v.encode()
txn.put(k, v)
def find_rot_angle(idx_letters):
idx_letters = np.array(idx_letters).transpose()
pca = PCA(n_components=2)
pca.fit(idx_letters)
comp = pca.components_
angle = math.atan(comp[0][0]/comp[0][1])
return math.degrees(angle)
def read_data_from_folder(folder_path):
image_path_list = []
label_list = []
pics = os.listdir(folder_path)
pics.sort(key=lambda i: len(i))
for pic in pics:
image_path_list.append(folder_path + '/' + pic)
label_list.append(pic.split('_')[0])
return image_path_list, label_list
def read_data_from_file(file_path):
image_path_list = []
label_list = []
f = open(file_path)
while True:
line1 = f.readline()
line2 = f.readline()
if not line1 or not line2:
break
line1 = line1.replace('\r', '').replace('\n', '')
line2 = line2.replace('\r', '').replace('\n', '')
image_path_list.append(line1)
label_list.append(line2)
return image_path_list, label_list
def show_demo(demo_number, image_path_list, label_list):
print('\nShow some demo to prevent creating wrong lmdb data')
print('The first line is the path to image and the second line is the image label')
for i in range(demo_number):
print('image: %s\nlabel: %s\n' % (image_path_list[i], label_list[i]))
def create_img_label_list(top_dir,dataset, mode, words, author_number, remove_punc):
root_dir = os.path.join(top_dir, dataset)
output_dir = root_dir + (dataset=='IAM')*('/words'*words + '/lines'*(not words))
image_path_list, label_list = [], []
author_id = 'None'
mode = 'all'
if dataset=='CVL':
root_dir = os.path.join(root_dir, 'cvl-database-1-1')
if words:
images_name = 'words'
else:
images_name = 'lines'
if mode == 'tr' or mode == 'val':
mode_dir = ['trainset']
elif mode == 'te':
mode_dir = ['testset']
elif mode == 'all':
mode_dir = ['testset', 'trainset']
idx = 1
for mod in mode_dir:
images_dir = os.path.join(root_dir, mod, images_name)
for path, subdirs, files in os.walk(images_dir):
for name in files:
if (mode == 'tr' and idx >= 10000) or (
mode == 'val' and idx < 10000) or mode == 'te' or mode == 'all' or mode == 'tr_3te':
if os.path.splitext(name)[0].split('-')[1] == '6':
continue
label = os.path.splitext(name)[0].split('-')[-1]
imagePath = os.path.join(path, name)
label_list.append(label)
image_path_list.append(imagePath)
idx += 1
elif dataset=='IAM':
labels_name = 'original'
if mode=='all':
mode = ['te', 'va1', 'va2', 'tr']
elif mode=='valtest':
mode=['te', 'va1', 'va2']
else:
mode = [mode]
if words:
images_name = 'wordImages'
else:
images_name = 'lineImages'
images_dir = os.path.join(root_dir, images_name)
labels_dir = os.path.join(root_dir, labels_name)
full_ann_files = []
im_dirs = []
line_ann_dirs = []
image_path_list, label_list = [], []
for mod in mode:
part_file = os.path.join(root_dir, 'original_partition', mod + '.lst')
with open(part_file)as fp:
for line in fp:
name = line.split('-')
if int(name[-1][:-1]) == 0:
anno_file = os.path.join(labels_dir, '-'.join(name[:2]) + '.xml')
full_ann_files.append(anno_file)
im_dir = os.path.join(images_dir, name[0], '-'.join(name[:2]))
im_dirs.append(im_dir)
if author_number >= 0:
full_ann_files = [full_ann_files[author_number]]
im_dirs = [im_dirs[author_number]]
author_id = im_dirs[0].split('/')[-1]
lables_to_skip = ['.', '', ',', '"', "'", '(', ')', ':', ';', '!']
for i, anno_file in enumerate(full_ann_files):
with open(anno_file) as f:
try:
line = f.read()
annotation_content = xmltodict.parse(line)
lines = annotation_content['form']['handwritten-part']['line']
if words:
lines_list = []
for j in range(len(lines)):
lines_list.extend(lines[j]['word'])
lines = lines_list
except:
print('line is not decodable')
for line in lines:
try:
label = html.unescape(line['@text'])
except:
continue
if remove_punc and label in lables_to_skip:
continue
id = line['@id']
imagePath = os.path.join(im_dirs[i], id + '.png')
image_path_list.append(imagePath)
label_list.append(label)
elif dataset=='RIMES':
if mode=='tr':
images_dir = os.path.join(root_dir, 'orig','training_WR')
gt_file = os.path.join(root_dir, 'orig',
'groundtruth_training_icdar2011.txt')
elif mode=='te':
images_dir = os.path.join(root_dir, 'orig', 'testdataset_ICDAR')
gt_file = os.path.join(root_dir, 'orig',
'ground_truth_test_icdar2011.txt')
elif mode=='val':
images_dir = os.path.join(root_dir, 'orig', 'valdataset_ICDAR')
gt_file = os.path.join(root_dir, 'orig',
'ground_truth_validation_icdar2011.txt')
with open(gt_file, 'r') as f:
lines = f.readlines()
image_path_list = [os.path.join(images_dir, line.split(' ')[0]) for line in lines if len(line.split(' ')) > 1]
label_list = [line.split(' ')[1][:-1] for line in lines if len(line.split(' ')) > 1]
return image_path_list, label_list, output_dir, author_id
def createDataset(IMG_DATA, image_path_list, label_list, outputPath, mode, author_id, remove_punc, resize, imgH, init_gap, h_gap, charminW, charmaxW, discard_wide, discard_narr, labeled):
assert (len(image_path_list) == len(label_list))
nSamples = len(image_path_list)
outputPath = outputPath + (resize=='charResize') * ('/h%schar%sto%s/'%(imgH, charminW, charmaxW)) + (resize=='keepRatio') * ('/h%s/'%(imgH)) \
+ (resize=='noResize') * ('/noResize/') + (author_id!='None') * ('single_authors/'+author_id+'/' ) \
+ mode + (resize!='noResize') * (('_initGap%s'%(init_gap)) * (init_gap>0) + ('_hGap%s'%(h_gap)) * (h_gap>0) \
+ '_NoDiscard_wide' * (not discard_wide) + '_NoDiscard_wide' * (not discard_narr))+'_unlabeld' * (not labeled) +\
(('IAM' in outputPath) and remove_punc) *'_removePunc'
outputPath_ = '/root/Handwritten_data/IAM/authors' + (resize=='charResize') * ('/h%schar%sto%s/'%(imgH, charminW, charmaxW)) + (resize=='keepRatio') * ('/h%s/'%(imgH)) \
+ (resize=='noResize') * ('/noResize/') + (author_id!='None') * ('single_authors/'+author_id+'/' ) \
+ mode + (resize!='noResize') * (('_initGap%s'%(init_gap)) * (init_gap>0) + ('_hGap%s'%(h_gap)) * (h_gap>0) \
+ '_NoDiscard_wide' * (not discard_wide) + '_NoDiscard_wide' * (not discard_narr))+'_unlabeld' * (not labeled) +\
(('IAM' in outputPath) and remove_punc) *'_removePunc'
print(outputPath)
if os.path.exists(outputPath):
shutil.rmtree(outputPath)
os.makedirs(outputPath)
else:
os.makedirs(outputPath)
env = lmdb.open(outputPath, map_size=1099511627776)
cache = {}
cnt = 1
discard_wide = False
for i in tqdm(range(nSamples)):
imagePath = image_path_list[i]
#author_id = image_path_list[i].split('/')[-2]
label = label_list[i]
if not os.path.exists(imagePath):
print('%s does not exist' % imagePath)
continue
try:
im = Image.open(imagePath)
except:
continue
if resize in ['charResize', 'keepRatio']:
width, height = im.size
new_height = imgH - (h_gap * 2)
len_word = len(label)
width = int(width * imgH / height)
new_width = width
if resize=='charResize':
if (width/len_word > (charmaxW-1)) or (width/len_word < charminW) :
if discard_wide and width/len_word > 3*((charmaxW-1)):
print('%s has a width larger than max image width' % imagePath)
continue
if discard_narr and (width / len_word) < (charminW/3):
print('%s has a width smaller than min image width' % imagePath)
continue
else:
new_width = len_word * random.randrange(charminW, charmaxW)
# reshapeRun all_gather on arbitrary picklable data (not necessarily tensors) the image to the new dimensions
im = im.resize((new_width, new_height))
# append with 256 to add left, upper and lower white edges
init_w = int(random.normalvariate(init_gap, init_gap / 2))
new_im = Image.new("RGB", (new_width+init_gap, imgH), color=(256,256,256))
new_im.paste(im, (abs(init_w), h_gap))
im = new_im
if author_id in IMG_DATA.keys():
IMG_DATA[author_id].append({'img':im, 'label':label})
else:
IMG_DATA[author_id] = []
IMG_DATA[author_id].append({'img':im, 'label':label})
imgByteArr = io.BytesIO()
#im.save(os.path.join(outputPath, 'IMG_'+str(cnt)+'_'+str(label)+'.jpg'))
im.save(imgByteArr, format='tiff')
wordBin = imgByteArr.getvalue()
imageKey = 'image-%09d' % cnt
labelKey = 'label-%09d' % cnt
cache[imageKey] = wordBin
if labeled:
cache[labelKey] = label
if cnt % 1000 == 0:
writeCache(env, cache)
cache = {}
print('Written %d / %d' % (cnt, nSamples))
cnt += 1
nSamples = cnt - 1
cache['num-samples'] = str(nSamples)
writeCache(env, cache)
env.close()
print('Created dataset with %d samples' % nSamples)
return IMG_DATA
def createDict(label_list, top_dir, dataset, mode, words, remove_punc):
lex_name = dataset+'_' + mode + (dataset in ['IAM','RIMES'])*('_words' * words) + (dataset=='IAM') * ('_removePunc' * remove_punc)
all_words = '-'.join(label_list).split('-')
unique_words = []
words = []
for x in tqdm(all_words):
if x!='' and x!=' ':
words.append(x)
if x not in unique_words:
unique_words.append(x)
print(len(words))
print(len(unique_words))
with open(os.path.join(top_dir, 'Lexicon', lex_name+'_stratified.txt'), "w") as file:
file.write("\n".join(unique_words))
file.close()
with open(os.path.join(top_dir, 'Lexicon', lex_name + '_NOTstratified.txt'), "w") as file:
file.write("\n".join(words))
file.close()
def printAlphabet(label_list):
# get all unique alphabets - ignoring alphabet longer than one char
all_chars = ''.join(label_list)
unique_chars = []
for x in all_chars:
if x not in unique_chars and len(x) == 1:
unique_chars.append(x)
# for unique_char in unique_chars:
print(''.join(unique_chars))
if __name__ == '__main__':
TRAIN_IDX = 'gan.iam.tr_va.gt.filter27'
TEST_IDX = 'gan.iam.test.gt.filter27'
IAM_WORD_DATASET_PATH = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/IAM/wordImages/'
XMLS_PATH = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/IAM/xmls/'
word_paths = {i.split('/')[-1][:-4]:i for i in glob.glob(IAM_WORD_DATASET_PATH + '*/*/*.png')}
id_to_wid = {i.split('/')[-1][:-4]:xmltodict.parse(open(i).read())['form']['@writer-id'] for i in glob.glob(XMLS_PATH+'/**')}
trainslist = [i[:-1] for i in open(TRAIN_IDX, 'r').readlines()]
testslist = [i[:-1] for i in open(TEST_IDX, 'r').readlines()]
dict_ = {'train':{}, 'test':{}}
for i in trainslist:
author_id = i.split(',')[0]
file_id, string = i.split(',')[1].split(' ')
file_path = word_paths[file_id]
if author_id in dict_['train']:
dict_['train'][author_id].append({'path':file_path, 'label':string})
else:
dict_['train'][author_id] = [{'path':file_path, 'label':string}]
for i in testslist:
author_id = i.split(',')[0]
file_id, string = i.split(',')[1].split(' ')
file_path = word_paths[file_id]
if author_id in dict_['test']:
dict_['test'][author_id].append({'path':file_path, 'label':string})
else:
dict_['test'][author_id] = [{'path':file_path, 'label':string}]
create_Dict = True # create a dictionary of the generated dataset
dataset = 'IAM' #CVL/IAM/RIMES/gw
mode = 'all' # tr/te/val/va1/va2/all
labeled = True
top_dir = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/'
# parameter relevant for IAM/RIMES:
words = True # use words images, otherwise use lines
#parameters relevant for IAM:
author_number = -1 # use only images of a specific writer. If the value is -1, use all writers, otherwise use the index of this specific writer
remove_punc = True # remove images which include only one punctuation mark from the list ['.', '', ',', '"', "'", '(', ')', ':', ';', '!']
resize = 'charResize' # charResize|keepRatio|noResize - type of resize,
# char - resize so that each character's width will be in a specific range (inside this range the width will be chosen randomly),
# keepRatio - resize to a specific image height while keeping the height-width aspect-ratio the same.
# noResize - do not resize the image
imgH = 32 # height of the resized image
init_gap = 0 # insert a gap before the beginning of the text with this number of pixels
charmaxW = 17 # The maximum character width
charminW = 16 # The minimum character width
h_gap = 0 # Insert a gap below and above the text
discard_wide = True # Discard images which have a character width 3 times larger than the maximum allowed character size (instead of resizing them) - this helps discard outlier images
discard_narr = True # Discard images which have a character width 3 times smaller than the minimum allowed charcter size.
IMG_DATA = {}
for idx_auth in range(1669999):
print ('Processing '+ str(idx_auth))
image_path_list, label_list, outputPath, author_id = create_img_label_list(top_dir,dataset, mode, words, idx_auth, remove_punc)
IMG_DATA[author_id] = []
# in a previous version we also cut the white edges of the image to keep a tight rectangle around the word but it
# seems in all the datasets we use this is already the case so I removed it. If there are problems maybe we should add this back.
IMG_DATA = createDataset(IMG_DATA, image_path_list, label_list, outputPath, mode, author_id, remove_punc, resize, imgH, init_gap, h_gap, charminW, charmaxW, discard_wide, discard_narr, labeled)
#if create_Dict:
# createDict(label_list, top_dir, dataset, mode, words, remove_punc)
#printAlphabet(label_list)
import pickle
dict_ = {}
for id_ in IMG_DATA.keys():
author_id = id_to_wid[id_]
if author_id in dict_.keys():
dict_[author_id].extend(IMG_DATA[id_])
else:
dict_[author_id] = IMG_DATA[id_]
#pickle.dump(IMG_DATA, '/root/IAM') |