File size: 2,203 Bytes
8a11254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import random
import json

import torch

from model import NeuralNet
from nltk_utils import bag_of_words, tokenize

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

with open('intents.json', 'r') as json_data:
    intents = json.load(json_data)

FILE = 'data.pth'
data = torch.load(FILE)

input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data["all_words"]
tags = data["tags"]
model_state = data["model_state"]

model = NeuralNet(input_size,hidden_size,output_size).to(device)
model.load_state_dict(model_state)
model.eval()

bot_name = "Anis"
# print("Let's chat! (type 'quit' to exit)")
# while True:
#     sentence = input("You: ")
#     if sentence == "quit":
#         break

#     sentence = tokenize(sentence)
#     X = bag_of_words(sentence, all_words)
#     X = X.reshape(1, X.shape[0])
#     X = torch.from_numpy(X).to(device)

#     output = model(X)
#     _, predicted = torch.max(output, dim=1)

#     tag = tags[predicted.item()]

#     probs = torch.softmax(output, dim=1)
#     prob = probs[0][predicted.item()]
#     if prob.item() > 0.75:
#         for intent in intents['intents']:
#             if tag == intent['tag']:
#                 print(f"{bot_name}: { random.choice(intent['responses'])}")
#     else:
#         print(f"{bot_name}: I do not understand...")

def get_response(msg):
    sentence = tokenize(msg)
    X = bag_of_words(sentence, all_words)
    X = X.reshape(1, X.shape[0])
    X = torch.from_numpy(X).to(device)

    output = model(X)
    _, predicted = torch.max(output, dim=1)

    tag = tags[predicted.item()]

    probs = torch.softmax(output, dim=1)
    prob = probs[0][predicted.item()]
    if prob.item() > 0.75:
        for intent in intents['intents']:
            if tag == intent["tag"]:
                return random.choice(intent['responses'])
    
    return "I do not understand..."


if __name__ == "__main__":
    print("Let's chat! (type 'quit' to exit)")
    while True:
        # sentence = "do you use credit cards?"
        sentence = input("You: ")
        if sentence == "quit":
            break

        resp = get_response(sentence)
        print(resp)