File size: 34,909 Bytes
92b1264
 
 
 
 
 
 
 
 
 
 
8fc9ca7
92b1264
 
8fc9ca7
92b1264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fc9ca7
92b1264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b83bd8
c7322ce
92b1264
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
#!/usr/bin/env python
# coding: utf-8

# In[1]:


import pickle
import copy
import numpy as np
import pickle

#pip install torch
import torch
import torch.nn as nn
#pip install transformers
from transformers import BertModel, BertTokenizer
#import utils


# In[2]:


#!pip install nltk
#!pip install tensorflow --upgrade
import os

import torch
import torch.nn as nn
import transformers
from transformers import BertModel, BertTokenizer

# from torch_shallow_neural_classifier import TorchShallowNeuralClassifier
# from torch_rnn_classifier import TorchRNNModel
# from torch_rnn_classifier import TorchRNNClassifier
# from torch_rnn_classifier import TorchRNNClassifierModel
# from torch_rnn_classifier import TorchRNNClassifier
# import sst
# import utils

#!pip install numpy --upgrade
import numpy as np

import pandas as pd

#pip install nltk
from nltk.tokenize.treebank import TreebankWordDetokenizer
from nltk.tokenize.treebank import TreebankWordTokenizer



import tensorflow as tf


# In[79]:


class TorchModelBase:
    def __init__(self,
            batch_size=1028,
            max_iter=1000,
            eta=0.001,
            optimizer_class=torch.optim.Adam,
            l2_strength=0,
            gradient_accumulation_steps=1,
            max_grad_norm=None,
            warm_start=False,
            early_stopping=False,
            validation_fraction=0.1,
            shuffle_train=True,
            n_iter_no_change=10,
            tol=1e-5,
            device=None,    
            display_progress=True,
            **optimizer_kwargs):
        """
        Base class for all the PyTorch-based models.

        Parameters
        ----------
        batch_size: int
            Number of examples per batch. Batching is handled by a
            `torch.utils.data.DataLoader`. Final batches can have fewer
            examples, depending on the total number of examples in the
            dataset.

        max_iter: int
            Maximum number of training iterations. This will interact
            with `early_stopping`, `n_iter_no_change`, and `tol` in the
            sense that this limit will be reached if and only if and
            conditions triggered by those other parameters are not met.

        eta : float
            Learning rate for the optimizer.

        optimizer_class: `torch.optimizer.Optimizer`
            Any PyTorch optimizer should work. Additional arguments
            can be passed to this object via `**optimizer_kwargs`. The
            optimizer itself is built by `self.build_optimizer` when
            `fit` is called.

        l2_strength: float
            L2 regularization parameters for the optimizer. The default
            of 0 means no regularization, and larger values correspond
            to stronger regularization.

        gradient_accumulation_steps: int
            Controls how often the model parameters are updated during
            learning. For example, with `gradient_accumulation_steps=2`,
            the parameters are updated after every other batch. The primary
            use case for `gradient_accumulation_steps > 1` is where the
            model is very large, so only small batches of examples can be
            fit into memory. The updates based on these small batches can
            have high variance, so accumulating a few batches before
            updating can smooth the process out.

        max_grad_norm: None or float
            If not `None`, then `torch.nn.utils.clip_grad_norm_` is used
            to clip all the model parameters to within the range set
            by this value. This is a kind of brute-force way of keeping
            the parameter values from growing absurdly large or small.

        warm_start: bool
            If `False`, then repeated calls to `fit` will reset all the
            optimization settings: the model parameters, the optimizer,
            and the metadata we collect during optimization. If `True`,
            then calling `fit` twice with `max_iter=N` should be the same
            as calling fit once with `max_iter=N*2`.

        early_stopping: bool
            If `True`, then `validation_fraction` of the data given to
            `fit` are held out and used to assess the model after every
            epoch. The best scoring model is stored in an attribute
            `best_parameters`. If an improvement of at least `self.tol`
            isn't seen after `n_iter_no_change` iterations, then training
            stops and `self.model` is set to use `best_parameters`.

        validation_fraction: float
            Percentage of the data given to `fit` to hold out for use in
            early stopping. Ignored if `early_stopping=False`

        shuffle_train: bool
            Whether to shuffle the training data.

        n_iter_no_change: int
            Number of epochs used to control convergence and early
            stopping. Where `early_stopping=True`, training stops if an
            improvement of more than `self.tol` isn't seen after this
            many epochs. If `early_stopping=False`, then training stops
            if the epoch error doesn't drop by at least `self.tol` after
            this many epochs.

        tol: float
            Value used to control `early_stopping` and convergence.

        device: str or None
            Used to set the device on which the PyTorch computations will
            be done. If `device=None`, this will choose a CUDA device if
            one is available, else the CPU is used.

        display_progress: bool
            Whether to print optimization information incrementally to
            `sys.stderr` during training.

        **optimizer_kwargs: kwargs
            Any additional keywords given to the model will be passed to
            the optimizer -- see `self.build_optimizer`. The intent is to
            make it easy to tune these as hyperparameters will still
            allowing the user to specify just `optimizer_class` rather
            than setting up a full optimizer.

        Attributes
        ----------
        params: list
             All the keyword arguments are parameters and, with the
             exception of `display_progress`, their names are added to
             this list to support working with them using tools from
             `sklearn.model_selection`.

        """
        self.batch_size = batch_size
        self.max_iter = max_iter
        self.eta = eta
        self.optimizer_class = optimizer_class
        self.l2_strength = l2_strength
        self.gradient_accumulation_steps = max([gradient_accumulation_steps, 1])
        self.max_grad_norm = max_grad_norm
        self.warm_start = warm_start
        self.early_stopping = early_stopping
        self.validation_fraction = validation_fraction
        self.shuffle_train = shuffle_train
        self.n_iter_no_change = n_iter_no_change
        self.tol = tol
        if device is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = torch.device(device)
        self.display_progress = display_progress
        self.optimizer_kwargs = optimizer_kwargs
        for k, v in self.optimizer_kwargs.items():
            setattr(self, k, v)
        self.params = [
            'batch_size',
            'max_iter',
            'eta',
            'optimizer_class',
            'l2_strength',
            'gradient_accumulation_steps',
            'max_grad_norm',
            'validation_fraction',
            'early_stopping',
            'n_iter_no_change',
            'warm_start',
            'tol']
        self.params += list(optimizer_kwargs.keys())

    def build_dataset(self, *args, **kwargs):
        """
        Subclasses are required to define this method. Perhaps the most
        important design note is that the function should be prepared to
        return datasets that are appropriate for both training and
        prediction. For training, we expect `*args` to have labels in
        final position. For prediction, we expect all of `*args` to be
        model inputs. For example, in a simple classifier, we expect
        `*args` to be a pair `(X, y)` for training and so this method
        should return something like:

        `torch.utils.data.TensorDataset(X, y)`

        For prediction, we get only `X`, so we should return

        `torch.utils.data.TensorDataset(X)`

        Parameters
        ----------
        *args: any arguments to be used to create the dataset

        **kwargs: any desired keyword arguments

        Returns
        -------
        `torch.utils.data.Dataset` or a custom subclass thereof

        """
        raise NotImplementedError

    def build_graph(self, *args, **kwargs):
        """
        Build the core computational graph. This is called only after
        `fit` is called. The return value of this function becomes the
        the `self.model` attribute.

        Parameters
        ----------
        *args: any arguments to be used to create the dataset

        **kwargs: any desired keyword arguments

        Returns
        -------
        nn.Module or subclass thereof

        """
        raise NotImplementedError

    def score(self, *args):
        """
        Required by the `sklearn.model_selection` tools. This function
        needs to take the same arguments as `fit`. For `*args` is usually
        an `(X, y)` pair of features and labels, and `self.predict(X)`
        is called and then some kind of scoring function is used to
        compare those predictions with `y`. The return value should be
        some kind of appropriate score for the model in question.

        Notes
        -----
        For early stopping, we use this function to get scores and
        assume that larger scores are better. This would conflict with
        using, say, a mean-squared-error scoring function.

        """
        raise NotImplementedError

    def build_optimizer(self):
        """
        Builds the optimizer. This function is called only when `fit`
        is called.

        Returns
        -------
        torch.optimizer.Optimizer

        """
        return self.optimizer_class(
            self.model.parameters(),
            lr=self.eta,
            weight_decay=self.l2_strength,
            **self.optimizer_kwargs)

    def fit(self, *args):
        """
        Generic optimization method.

        Parameters
        ----------
        *args: list of objects
            We assume that the final element of args give the labels
            and all the preceding elements give the system inputs.
            For regular supervised learning, this is like (X, y), but
            we allow for models that might use multiple data structures
            for their inputs.

        Attributes
        ----------
        model: nn.Module or subclass thereof
            Set by `build_graph`. If `warm_start=True`, then this is
            initialized only by the first call to `fit`.

        optimizer: torch.optimizer.Optimizer
            Set by `build_optimizer`. If `warm_start=True`, then this is
            initialized only by the first call to `fit`.

        errors: list of float
            List of errors. If `warm_start=True`, then this is
            initialized only by the first call to `fit`. Thus, where
            `max_iter=5`, if we call `fit` twice with `warm_start=True`,
            then `errors` will end up with 10 floats in it.

        validation_scores: list
            List of scores. This is filled only if `early_stopping=True`.
            If `warm_start=True`, then this is initialized only by the
            first call to `fit`. Thus, where `max_iter=5`, if we call
            `fit` twice with `warm_start=True`, then `validation_scores`
            will end up with 10 floats in it.

        no_improvement_count: int
            Used to control early stopping and convergence. These values
            are controlled by `_update_no_improvement_count_early_stopping`
            or `_update_no_improvement_count_errors`.  If `warm_start=True`,
            then this is initialized only by the first call to `fit`. Thus,
            in that situation, the values could accumulate across calls to
            `fit`.

        best_error: float
           Used to control convergence. Smaller is assumed to be better.
           If `warm_start=True`, then this is initialized only by the first
           call to `fit`. It will be reset by
           `_update_no_improvement_count_errors` depending on how the
           optimization is proceeding.

        best_score: float
           Used to control early stopping. If `warm_start=True`, then this
           is initialized only by the first call to `fit`. It will be reset
           by `_update_no_improvement_count_early_stopping` depending on how
           the optimization is proceeding. Important: we currently assume
           that larger scores are better. As a result, we will not get the
           correct results for, e.g., a scoring function based in
           `mean_squared_error`. See `self.score` for additional details.

        best_parameters: dict
            This is a PyTorch state dict. It is used if and only if
            `early_stopping=True`. In that case, it is updated whenever
            `best_score` is improved numerically. If the early stopping
            criteria are met, then `self.model` is reset to contain these
            parameters before `fit` exits.

        Returns
        -------
        self

        """
        if self.early_stopping:
            args, dev = self._build_validation_split(
                *args, validation_fraction=self.validation_fraction)

        # Dataset:
        dataset = self.build_dataset(*args)
        dataloader = self._build_dataloader(dataset, shuffle=self.shuffle_train)

        # Set up parameters needed to use the model. This is a separate
        # function to support using pretrained models for prediction,
        # where it might not be desirable to call `fit`.
        self.initialize()

        # Make sure the model is where we want it:
        self.model.to(self.device)

        self.model.train()
        self.optimizer.zero_grad()

        for iteration in range(1, self.max_iter+1):

            epoch_error = 0.0

            for batch_num, batch in enumerate(dataloader, start=1):

                batch = [x.to(self.device, non_blocking=True) for x in batch]

                X_batch = batch[: -1]
                y_batch = batch[-1]

                batch_preds = self.model(*X_batch)

                err = self.loss(batch_preds, y_batch)

                if self.gradient_accumulation_steps > 1 and \
                  self.loss.reduction == "mean":
                    err /= self.gradient_accumulation_steps

                err.backward()

                epoch_error += err.item()

                if batch_num % self.gradient_accumulation_steps == 0 or \
                  batch_num == len(dataloader):
                    if self.max_grad_norm is not None:
                        torch.nn.utils.clip_grad_norm_(
                            self.model.parameters(), self.max_grad_norm)
                    self.optimizer.step()
                    self.optimizer.zero_grad()

            # Stopping criteria:

            if self.early_stopping:
                self._update_no_improvement_count_early_stopping(*dev)
                if self.no_improvement_count > self.n_iter_no_change:
                    utils.progress_bar(
                        "Stopping after epoch {}. Validation score did "
                        "not improve by tol={} for more than {} epochs. "
                        "Final error is {}".format(iteration, self.tol,
                            self.n_iter_no_change, epoch_error),
                        verbose=self.display_progress)
                    break

            else:
                self._update_no_improvement_count_errors(epoch_error)
                if self.no_improvement_count > self.n_iter_no_change:
                    utils.progress_bar(
                        "Stopping after epoch {}. Training loss did "
                        "not improve more than tol={}. Final error "
                        "is {}.".format(iteration, self.tol, epoch_error),
                        verbose=self.display_progress)
                    break

            utils.progress_bar(
                "Finished epoch {} of {}; error is {}".format(
                    iteration, self.max_iter, epoch_error),
                verbose=self.display_progress)

        if self.early_stopping:
            self.model.load_state_dict(self.best_parameters)

        return self

    def initialize(self):
        """
        Method called by `fit` to establish core attributes. To use a
        pretrained model without calling `fit`, one can use this
        method.

        """
        if not self.warm_start or not hasattr(self, "model"):
            self.model = self.build_graph()
            # This device move has to happen before the optimizer is built:
            # https://pytorch.org/docs/master/optim.html#constructing-it
            self.model.to(self.device)
            self.optimizer = self.build_optimizer()
            self.errors = []
            self.validation_scores = []
            self.no_improvement_count = 0
            self.best_error = np.inf
            self.best_score = -np.inf
            self.best_parameters = None

    @staticmethod
    def _build_validation_split(*args, validation_fraction=0.2):
        """
        Split `*args` into train and dev portions for early stopping.
        We use `train_test_split`. For args of length N, then delivers
        N*2 objects, arranged as

        X1_train, X1_test, X2_train, X2_test, ..., y_train, y_test

        Parameters
        ----------
        *args: List of objects to split.

        validation_fraction: float
            Percentage of the examples to use for the dev portion. In
            `fit`, this is determined by `self.validation_fraction`.
            We give it as an argument here to facilitate unit testing.

        Returns
        -------
        Pair of tuples `train` and `dev`

        """
        if validation_fraction == 1.0:
            return args, args
        results = train_test_split(*args, test_size=validation_fraction)
        train = results[::2]
        dev = results[1::2]
        return train, dev

    def _build_dataloader(self, dataset, shuffle=True):
        """
        Internal method used to create a dataloader from a dataset.
        This is used by `fit` and `_predict`.

        Parameters
        ----------
        dataset: torch.utils.data.Dataset

        shuffle: bool
            When training, this is `True`. For prediction, this is
            crucially set to `False` so that the examples are not
            shuffled out of order with respect to labels that might
            be used for assessment.

        Returns
        -------
        torch.utils.data.DataLoader

        """
        if hasattr(dataset, "collate_fn"):
            collate_fn = dataset.collate_fn
        else:
            collate_fn = None
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=self.batch_size,
            shuffle=shuffle,
            pin_memory=True,
            collate_fn=collate_fn)
        return dataloader

    def _update_no_improvement_count_early_stopping(self, *dev):
        """
        Internal method used by `fit` to control early stopping.
        The method uses `self.score(*dev)` for scoring and updates
        `self.validation_scores`, `self.no_improvement_count`,
        `self.best_score`, `self.best_parameters` as appropriate.

        """
        score = self.score(*dev)
        self.validation_scores.append(score)
        # If the score isn't at least `self.tol` better, increment:
        if score < (self.best_score + self.tol):
            self.no_improvement_count += 1
        else:
            self.no_improvement_count = 0
        # If the current score is numerically better than all previous
        # scores, update the best parameters:
        if score > self.best_score:
            self.best_parameters = copy.deepcopy(self.model.state_dict())
            self.best_score = score
        self.model.train()

    def _update_no_improvement_count_errors(self, epoch_error):
        """
        Internal method used by `fit` to control convergence.
        The method uses `epoch_error`, `self.best_error`, and
        `self.tol` to make decisions, and it updates `self.errors`,
        `self.no_improvement_count`, and `self.best_error` as
        appropriate.

        """
        if epoch_error > (self.best_error - self.tol):
            self.no_improvement_count += 1
        else:
            self.no_improvement_count = 0
        if epoch_error < self.best_error:
            self.best_error = epoch_error
        self.errors.append(epoch_error)

    def _predict(self, *args, device=None):
        """
        Internal method that subclasses are expected to use to define
        their own `predict` functions. The hope is that this method
        can do all the data organization and other details, allowing
        subclasses to have compact predict methods that just encode
        the core logic specific to them.

        Parameters
        ----------
        *args: system inputs

        device: str or None
            Allows the user to temporarily change the device used
            during prediction. This is useful if predictions require a
            lot of memory and so are better done on the CPU. After
            prediction is done, the model is returned to `self.device`.

        Returns
        -------
        The precise return value depends on the nature of the predictions.
        If the predictions have the same shape across all batches, then
        we return a single tensor concatenation of them. If the shape
        can vary across batches, as is common for sequence prediction,
        then we return a list of tensors of varying length.

        """
        device = self.device if device is None else torch.device(device)

        # Dataset:
        dataset = self.build_dataset(*args)
        dataloader = self._build_dataloader(dataset, shuffle=False)

        # Model:
        self.model.to(device)
        self.model.eval()

        preds = []
        with torch.no_grad():
            for batch in dataloader:
                X = [x.to(device, non_blocking=True) for x in batch]
                preds.append(self.model(*X))

        # Make sure the model is back on the instance device:
        #self.model.to(self.device)

        # If the batch outputs differ only in their batch size, sharing
        # all other dimensions, then we can concatenate them and maintain
        # a tensor. For simple classification problems, this should hold.
        if all(x.shape[1: ] == preds[0].shape[1: ] for x in preds[1: ]):
            return torch.cat(preds, axis=0)
        # The batch outputs might differ along other dimensions. This is
        # common for sequence prediction, where different batches might
        # have different max lengths, since we pad on a per-batch basis.
        # In this case, we can't concatenate them, so we return a list
        # of the predictions, where each prediction is a tensor. Note:
        # the predictions might still be padded and so need trimming on a
        # per example basis.
        else:
            return [p for batch in preds for p in batch]

    def get_params(self, deep=True):
        params = self.params.copy()
        # Obligatorily add `vocab` so that sklearn passes it in when
        # creating new model instances during cross-validation:
        if hasattr(self, 'vocab'):
            params += ['vocab']
        return {p: getattr(self, p) for p in params}

    def set_params(self, **params):
        for key, val in params.items():
            if key not in self.params:
                raise ValueError(
                    "{} is not a parameter for {}. For the list of "
                    "available parameters, use `self.params`.".format(
                        key, self.__class__.__name__))
            else:
                setattr(self, key, val)
        return self

    def to_pickle(self, output_filename):
        """
        Serialize the entire class instance. Importantly, this is
        different from using the standard `torch.save` method:

        torch.save(self.model.state_dict(), output_filename)

        The above stores only the underlying model parameters. In
        contrast, the current method ensures that all of the model
        parameters are on the CPU and then stores the full instance.
        This is necessary to ensure that we retain all the information
        needed to read new examples, do additional training, make
        predictions, and so forth.

        Parameters
        ----------
        output_filename : str
            Full path for the output file.

        """
        self.model = self.model.cpu()
        with open(output_filename, 'wb') as f:
            pickle.dump(self, f)

    @staticmethod
    def from_pickle(src_filename):
        """
        Load an entire class instance onto the CPU. This also sets
        `self.warm_start=True` so that the loaded parameters are used
        if `fit` is called.

        Importantly, this is different from recommended PyTorch method:

        self.model.load_state_dict(torch.load(src_filename))

        We cannot reliably do this with new instances, because we need
        to see new examples in order to set some of the model
        dimensionalities and obtain information about what the class
        labels are. Thus, the current method loads an entire serialized
        class as created by `to_pickle`.

        The training and prediction code move the model parameters to
        `self.device`.

        Parameters
        ----------
        src_filename : str
            Full path to the serialized model file.

        """
        with open(src_filename, 'rb') as f:
            return pickle.load(f)

    def __repr__(self):
        param_str = ["{}={}".format(a, getattr(self, a)) for a in self.params]
        param_str = ",\n\t".join(param_str)
        return "{}(\n\t{})".format(self.__class__.__name__, param_str)


# In[80]:


class TorchShallowNeuralClassifier(TorchModelBase):
    def __init__(self,
            hidden_dim=50,
            hidden_activation=nn.Tanh(),
            **base_kwargs):
        """
        A model

        h = f(xW_xh + b_h)
        y = softmax(hW_hy + b_y)

        with a cross-entropy loss and f determined by `hidden_activation`.

        Parameters
        ----------
        hidden_dim : int
            Dimensionality of the hidden layer.

        hidden_activation : nn.Module
            The non-activation function used by the network for the
            hidden layer.

        **base_kwargs
            For details, see `torch_model_base.py`.

        Attributes
        ----------
        loss: nn.CrossEntropyLoss(reduction="mean")

        self.params: list
            Extends TorchModelBase.params with names for all of the
            arguments for this class to support tuning of these values
            using `sklearn.model_selection` tools.

        """
        self.hidden_dim = hidden_dim
        self.hidden_activation = hidden_activation
        super().__init__(**base_kwargs)
        self.loss = nn.CrossEntropyLoss(reduction="mean")
        self.params += ['hidden_dim', 'hidden_activation']

    def build_graph(self):
        """
        Define the model's computation graph.

        Returns
        -------
        nn.Module

        """
        return nn.Sequential(
            nn.Linear(self.input_dim, self.hidden_dim),
            self.hidden_activation,
            nn.Linear(self.hidden_dim, self.n_classes_))

    def build_dataset(self, X, y=None):
        """
        Define datasets for the model.

        Parameters
        ----------
        X : iterable of length `n_examples`
           Each element must have the same length.

        y: None or iterable of length `n_examples`

        Attributes
        ----------
        input_dim : int
            Set based on `X.shape[1]` after `X` has been converted to
            `np.array`.

        Returns
        -------
        torch.utils.data.TensorDataset` Where `y=None`, the dataset will
        yield single tensors `X`. Where `y` is specified, it will yield
        `(X, y)` pairs.

        """
        X = np.array(X)
        self.input_dim = X.shape[1]
        X = torch.FloatTensor(X)
        if y is None:
            dataset = torch.utils.data.TensorDataset(X)
        else:
            self.classes_ = sorted(set(y))
            self.n_classes_ = len(self.classes_)
            class2index = dict(zip(self.classes_, range(self.n_classes_)))
            y = [class2index[label] for label in y]
            y = torch.tensor(y)
            dataset = torch.utils.data.TensorDataset(X, y)
        return dataset

    def score(self, X, y, device=None):
        """
        Uses macro-F1 as the score function. Note: this departs from
        `sklearn`, where classifiers use accuracy as their scoring
        function. Using macro-F1 is more consistent with our course.

        This function can be used to evaluate models, but its primary
        use is in cross-validation and hyperparameter tuning.

        Parameters
        ----------
        X: np.array, shape `(n_examples, n_features)`

        y: iterable, shape `len(n_examples)`
            These can be the raw labels. They will converted internally
            as needed. See `build_dataset`.

        device: str or None
            Allows the user to temporarily change the device used
            during prediction. This is useful if predictions require a
            lot of memory and so are better done on the CPU. After
            prediction is done, the model is returned to `self.device`.

        Returns
        -------
        float

        """
        preds = self.predict(X, device=device)
        return utils.safe_macro_f1(y, preds)

    def predict_proba(self, X, device=None):
        """
        Predicted probabilities for the examples in `X`.

        Parameters
        ----------
        X : np.array, shape `(n_examples, n_features)`

        device: str or None
            Allows the user to temporarily change the device used
            during prediction. This is useful if predictions require a
            lot of memory and so are better done on the CPU. After
            prediction is done, the model is returned to `self.device`.

        Returns
        -------
        np.array, shape `(len(X), self.n_classes_)`
            Each row of this matrix will sum to 1.0.

        """
        #print(device)
        preds = self._predict(X, device=device)
        probs = torch.softmax(preds, dim=1).cpu().numpy()
        return probs

    def predict(self, X, device="cpu"):
        """
        Predicted labels for the examples in `X`. These are converted
        from the integers that PyTorch needs back to their original
        values in `self.classes_`.

        Parameters
        ----------
        X : np.array, shape `(n_examples, n_features)`

        device: str or None
            Allows the user to temporarily change the device used
            during prediction. This is useful if predictions require a
            lot of memory and so are better done on the CPU. After
            prediction is done, the model is returned to `self.device`.

        Returns
        -------
        list, length len(X)

        """
        #print(device)
        probs = self.predict_proba(X, device=device)
        #return [{self.classes_[i.argmax(axis=1):] for i in probs]
        return [{self.classes_[i]:j} for i,j in zip(probs.argmax(axis=1),probs.max(axis=1))]


# In[81]:


class HfBertClassifierModel1(nn.Module):
    def __init__(self, n_classes, weights_name='bert-base-cased',hidden_dim=64):
        super().__init__()
        self.n_classes = n_classes
        self.weights_name = weights_name
        self.hidden_dim = hidden_dim
        self.bert = BertModel.from_pretrained(self.weights_name)
        self.bert.train()
        self.input_dim = self.bert.embeddings.word_embeddings.embedding_dim
        # The only new parameters -- the classifier:
        self.classifier_layer = nn.Sequential(
                nn.Linear(self.input_dim, self.hidden_dim),
                nn.ReLU(),
                nn.Dropout(0.1),
                nn.Linear(self.hidden_dim, self.n_classes))

    def forward(self, indices, mask):
        reps = self.bert(
            indices, attention_mask=mask)
        return self.classifier_layer(reps.pooler_output)


# In[82]:


class HfBertClassifier_all(TorchShallowNeuralClassifier):
    def __init__(self, weights_name, *args, **kwargs):
        self.weights_name = weights_name
        self.tokenizer = BertTokenizer.from_pretrained(self.weights_name)
        #self.hidden_dim=kwargs['hidden_dim']
        super().__init__(*args, **kwargs)
        self.params += ['weights_name']
        

    def build_graph(self):
        return HfBertClassifierModel1(self.n_classes_, self.weights_name)

    def build_dataset(self, X, y=None):
        data = self.tokenizer.batch_encode_plus(
            X,
            max_length=512,
            add_special_tokens=True,
            padding='longest',
            truncation=True,
            return_attention_mask=True)
        indices = torch.tensor(data['input_ids'])
        mask = torch.tensor(data['attention_mask'])
        if y is None:
            dataset = torch.utils.data.TensorDataset(indices, mask)
        else:
            self.classes_ = sorted(set(y))
            self.n_classes_ = len(self.classes_)
            class2index = dict(zip(self.classes_, range(self.n_classes_)))
            y = [class2index[label] for label in y]
            y = torch.tensor(y)
            dataset = torch.utils.data.TensorDataset(indices, mask, y)
        return dataset


# In[83]:


def bert_fine_tune_phi(text):
    return text


# In[85]:


model_try=HfBertClassifier_all.from_pickle("bert_model_deploy_1.pt")


# In[112]:


#model_try.predict(["The 1st half was bad and the 2nd half was good","Wow what an amazing movie"])


# In[93]:


tokenizer = TreebankWordTokenizer()
def treebank_tokenize_detokenize(s):
    return ' '.join(tokenizer.tokenize(s))


# In[110]:


def predict_1(text):
    text_tokenized=treebank_tokenize_detokenize(text)
    return model_try.predict([text_tokenized])[0]

import gradio as gr


iface = gr.Interface(fn=predict_1, inputs="text", outputs="text")
iface.launch()


# In[114]:


#predict_1("The 1st half was good but the 2nd half was bad")


# In[ ]: