Spaces:
Build error
Build error
File size: 15,116 Bytes
5c4b5eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import torch
from typing import Tuple, Callable
from diffusers.models.attention_processor import XFormersAttnProcessor, Attention
import xformers, xformers.ops
from typing import Optional
import math
import torch.nn.functional as F
from diffusers.utils import USE_PEFT_BACKEND
from diffusers.utils.import_utils import is_xformers_available
if is_xformers_available():
import xformers
import xformers.ops
xformers_is_available = True
else:
xformers_is_available = False
if hasattr(F, "scaled_dot_product_attention"):
torch2_is_available = True
else:
torch2_is_available = False
def init_generator(device: torch.device, fallback: torch.Generator = None):
"""
Forks the current default random generator given device.
"""
if device.type == "cpu":
return torch.Generator(device="cpu").set_state(torch.get_rng_state())
elif device.type == "cuda":
return torch.Generator(device=device).set_state(torch.cuda.get_rng_state())
else:
if fallback is None:
return init_generator(torch.device("cpu"))
else:
return fallback
def do_nothing(x: torch.Tensor, mode: str = None):
return x
def mps_gather_workaround(input, dim, index):
if input.shape[-1] == 1:
return torch.gather(
input.unsqueeze(-1),
dim - 1 if dim < 0 else dim,
index.unsqueeze(-1)
).squeeze(-1)
else:
return torch.gather(input, dim, index)
def up_or_downsample(item, cur_w, cur_h, new_w, new_h, method):
batch_size = item.shape[0]
item = item.reshape(batch_size, cur_h, cur_w, -1)
item = item.permute(0, 3, 1, 2)
df = cur_h // new_h
if method in "max_pool":
item = F.max_pool2d(item, kernel_size=df, stride=df, padding=0)
elif method in "avg_pool":
item = F.avg_pool2d(item, kernel_size=df, stride=df, padding=0)
else:
item = F.interpolate(item, size=(new_h, new_w), mode=method)
item = item.permute(0, 2, 3, 1)
item = item.reshape(batch_size, new_h * new_w, -1)
return item
def compute_merge(x: torch.Tensor, tome_info):
original_h, original_w = tome_info["size"]
original_tokens = original_h * original_w
downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
dim = x.shape[-1]
if dim == 320:
cur_level = "level_1"
downsample_factor = tome_info['args']['downsample_factor']
ratio = tome_info['args']['ratio']
elif dim == 640:
cur_level = "level_2"
downsample_factor = tome_info['args']['downsample_factor_level_2']
ratio = tome_info['args']['ratio_level_2']
else:
cur_level = "other"
downsample_factor = 1
ratio = 0.0
args = tome_info["args"]
cur_h, cur_w = original_h // downsample, original_w // downsample
new_h, new_w = cur_h // downsample_factor, cur_w // downsample_factor
if tome_info['timestep'] / 1000 > tome_info['args']['timestep_threshold_switch']:
merge_method = args["merge_method"]
else:
merge_method = args["secondary_merge_method"]
if cur_level != "other" and tome_info['timestep'] / 1000 > tome_info['args']['timestep_threshold_stop']:
if merge_method == "downsample" and downsample_factor > 1:
m = lambda x: up_or_downsample(x, cur_w, cur_h, new_w, new_h, args["downsample_method"])
u = lambda x: up_or_downsample(x, new_w, new_h, cur_w, cur_h, args["downsample_method"])
elif merge_method == "similarity" and ratio > 0.0:
w = int(math.ceil(original_w / downsample))
h = int(math.ceil(original_h / downsample))
r = int(x.shape[1] * ratio)
# Re-init the generator if it hasn't already been initialized or device has changed.
if args["generator"] is None:
args["generator"] = init_generator(x.device)
elif args["generator"].device != x.device:
args["generator"] = init_generator(x.device, fallback=args["generator"])
# If the batch size is odd, then it's not possible for prompted and unprompted images to be in the same
# batch, which causes artifacts with use_rand, so force it to be off.
use_rand = False if x.shape[0] % 2 == 1 else args["use_rand"]
m, u = bipartite_soft_matching_random2d(x, w, h, args["sx"], args["sy"], r,
no_rand=not use_rand, generator=args["generator"])
else:
m, u = (do_nothing, do_nothing)
else:
m, u = (do_nothing, do_nothing)
merge_fn, unmerge_fn = (m, u)
return merge_fn, unmerge_fn
def bipartite_soft_matching_random2d(metric: torch.Tensor,
w: int,
h: int,
sx: int,
sy: int,
r: int,
no_rand: bool = False,
generator: torch.Generator = None) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
if r <= 0:
return do_nothing, do_nothing
with torch.no_grad():
hsy, wsx = h // sy, w // sx
# For each sy by sx kernel, randomly assign one token to be dst and the rest src
if no_rand:
rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64)
else:
rand_idx = torch.randint(sy * sx, size=(hsy, wsx, 1), device=generator.device, generator=generator).to(
metric.device)
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer_view = torch.zeros(hsy, wsx, sy * sx, device=metric.device, dtype=torch.int64)
idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)
# Image is not divisible by sx or sy so we need to move it into a new buffer
if (hsy * sy) < h or (wsx * sx) < w:
idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64)
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
else:
idx_buffer = idx_buffer_view
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)
# We're finished with these
del idx_buffer, idx_buffer_view
# rand_idx is currently dst|src, so split them
num_dst = hsy * wsx
a_idx = rand_idx[:, num_dst:, :] # src
b_idx = rand_idx[:, :num_dst, :] # dst
def split(x):
C = x.shape[-1]
src = torch.gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
dst = torch.gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], r)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = torch.gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
unm = torch.gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
src = torch.gather(src, dim=-2, index=src_idx.expand(n, r, c))
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
_, _, c = unm.shape
src = torch.gather(dst, dim=-2, index=dst_idx.expand(B, r, c))
# Combine back to the original shape
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
out.scatter_(dim=-2,
index=torch.gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c),
src=unm)
out.scatter_(dim=-2,
index=torch.gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c),
src=src)
return out
return merge, unmerge
class TokenMergeAttentionProcessor:
def __init__(self):
# priortize torch2's flash attention, if not fall back to xformers then regular attention
if torch2_is_available:
self.attn_method = "torch2"
elif xformers_is_available:
self.attn_method = "xformers"
else:
self.attn_method = "regular"
def torch2_attention(self, attn, query, key, value, attention_mask, batch_size):
inner_dim=key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
return hidden_states
def xformers_attention(self, attn, query, key, value, attention_mask, batch_size):
query = attn.head_to_batch_dim(query).contiguous()
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
if attention_mask is not None:
attention_mask = attention_mask.reshape(batch_size * attn.heads, -1, attention_mask.shape[-1])
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=attention_mask, scale=attn.scale
)
hidden_states = attn.batch_to_head_dim(hidden_states)
return hidden_states
def regular_attention(self, attn, query, key, value, attention_mask, batch_size):
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
if attention_mask is not None:
attention_mask = attention_mask.reshape(batch_size * attn.heads, -1, attention_mask.shape[-1])
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
return hidden_states
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.FloatTensor:
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
if self._tome_info['args']['merge_tokens'] == "all":
merge_fn, unmerge_fn = compute_merge(hidden_states, self._tome_info)
hidden_states = merge_fn(hidden_states)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
if self._tome_info['args']['merge_tokens'] == "keys/values":
merge_fn, _ = compute_merge(encoder_hidden_states, self._tome_info)
encoder_hidden_states = merge_fn(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
if self.attn_method == "torch2":
hidden_states = self.torch2_attention(attn, query, key, value, attention_mask, batch_size)
elif self.attn_method == "xformers":
hidden_states = self.xformers_attention(attn, query, key, value, attention_mask, batch_size)
else:
hidden_states = self.regular_attention(attn, query, key, value, attention_mask, batch_size)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if self._tome_info['args']['merge_tokens'] == "all":
hidden_states = unmerge_fn(hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
|