File size: 9,259 Bytes
45916af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import math
import os

import librosa
import numpy as np
import onnxruntime as ort
from numpy.fft import rfft
from numpy.lib.stride_tricks import as_strided

from utils.utils import LSD


class PLCMOSEstimator():
    def __init__(self, model_version=1):
        """
        Initialize a PLC-MOS model of a given version. There are currently three models available, v0 (intrusive)
        and v1 (both non-intrusive and intrusive available). The default is to use the v1 models.
        """

        self.model_version = model_version
        model_paths = [
            # v0 model:
            [("models/plcmos_v0.onnx", 999999999999), (None, 0)],

            # v1 models:
            [("models/plcmos_v1_intrusive.onnx", 768),
             ("models/plcmos_v1_nonintrusive.onnx", 999999999999)],
        ]
        self.sessions = []
        self.max_lens = []
        options = ort.SessionOptions()
        options.intra_op_num_threads = 8
        options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
        for path, max_len in model_paths[model_version]:
            if not path is None:
                file_dir = os.path.dirname(os.path.realpath(__file__))
                self.sessions.append(ort.InferenceSession(
                    os.path.join(file_dir, path), options))
                self.max_lens.append(max_len)
            else:
                self.sessions.append(None)
                self.max_lens.append(0)

    def logpow_dns(self, sig, floor=-30.):
        """
        Compute log power of complex spectrum.

        Floor any -`np.inf` value to (nonzero minimum + `floor`) dB.
        If all values are 0s, floor all values to -80 dB.
        """
        log10e = np.log10(np.e)
        pspec = sig.real ** 2 + sig.imag ** 2
        zeros = pspec == 0
        logp = np.empty_like(pspec)
        if np.any(~zeros):
            logp[~zeros] = np.log(pspec[~zeros])
            logp[zeros] = np.log(pspec[~zeros].min()) + floor / 10 / log10e
        else:
            logp.fill(-80 / 10 / log10e)

        return logp

    def hop2hsize(self, wind, hop):
        """
        Convert hop fraction to integer size if necessary.
        """
        if hop >= 1:
            assert type(hop) == int, "Hop size must be integer!"
            return hop
        else:
            assert 0 < hop < 1, "Hop fraction has to be in range (0,1)!"
            return int(len(wind) * hop)

    def stana(self, sig, sr, wind, hop, synth=False, center=False):
        """
        Short term analysis by windowing
        """
        ssize = len(sig)
        fsize = len(wind)
        hsize = self.hop2hsize(wind, hop)
        if synth:
            sstart = hsize - fsize  # int(-fsize * (1-hfrac))
        elif center:
            sstart = -int(len(wind) / 2)  # odd window centered at exactly n=0
        else:
            sstart = 0
        send = ssize

        nframe = math.ceil((send - sstart) / hsize)

        # Calculate zero-padding sizes
        zpleft = -sstart
        zpright = (nframe - 1) * hsize + fsize - zpleft - ssize
        if zpleft > 0 or zpright > 0:
            sigpad = np.zeros(ssize + zpleft + zpright, dtype=sig.dtype)
            sigpad[zpleft:len(sigpad) - zpright] = sig
        else:
            sigpad = sig

        return as_strided(sigpad, shape=(nframe, fsize),
                          strides=(sig.itemsize * hsize, sig.itemsize)) * wind

    def stft(self, sig, sr, wind, hop, nfft):
        """
        Compute STFT: window + rfft
        """
        frames = self.stana(sig, sr, wind, hop, synth=True)
        return rfft(frames, n=nfft)

    def stft_transform(self, audio, dft_size=512, hop_fraction=0.5, sr=16000):
        """
        Compute STFT parameters, then compute STFT
        """
        window = np.hamming(dft_size + 1)
        window = window[:-1]
        amp = np.abs(self.stft(audio, sr, window, hop_fraction, dft_size))
        feat = self.logpow_dns(amp, floor=-120.)
        return feat / 20.

    def run(self, audio_degraded, audio_clean=None, combined=False):
        """
        Run the PLCMOS model and return the MOS for the given audio. If a clean audio file is passed and the
        selected model version has an intrusive version, that version will be used, otherwise, the nonintrusive
        model will be used. If combined is set to true (default), the mean of intrusive and nonintrusive models
        results will be returned, when both are available

        For intrusive models, the clean reference should be the unprocessed audio file the degraded audio is
        based on. It is not required to be aligned with the degraded audio.

        Audio data should be 16kHz, mono, [-1, 1] range.
        """
        audio_features_degraded = np.float32(self.stft_transform(audio_degraded))[
            np.newaxis, np.newaxis, ...]
        assert len(
            audio_features_degraded) <= self.max_lens[0], "Maximum input length exceeded"

        if audio_clean is None:
            combined = False

        mos = 0

        session = self.sessions[0]
        assert not session is None, "Intrusive model not available for this model version."
        audio_features_clean = np.float32(self.stft_transform(audio_clean))[
            np.newaxis, np.newaxis, ...]
        assert len(
            audio_features_clean) <= self.max_lens[0], "Maximum input length exceeded"
        onnx_inputs = {"degraded_audio": audio_features_degraded,
                       "clean_audio": audio_features_clean}
        mos = float(session.run(None, onnx_inputs)[0])

        session = self.sessions[1]
        assert not session is None, "Nonintrusive model not available for this model version."
        onnx_inputs = {"degraded_audio": audio_features_degraded}
        mos_2 = float(session.run(None, onnx_inputs)[0])
        mos = [mos, mos_2]
        return mos


def run_with_defaults(degraded, clean, allow_set_size_difference=False, progress=False, model_ver=1):
    import soundfile as sf
    import glob
    import tqdm
    import pandas as pd

    if os.path.isfile(degraded):
        degraded = [degraded]
    else:
        degraded = list(glob.glob(os.path.join(degraded, "*.wav")))

    if os.path.isfile(clean):
        clean = [clean] * len(degraded)
    else:
        clean = list(glob.glob(os.path.join(clean, "*.wav")))

    degraded = list(sorted(degraded))
    clean = list(sorted(clean))

    if not allow_set_size_difference:
        assert len(degraded) == len(clean)

    clean_dict = {os.path.basename(x): x for x in clean}
    clean = []
    for degraded_name in degraded:
        clean.append(clean_dict[os.path.basename(degraded_name)])
    assert len(degraded) == len(clean)

    iter = zip(degraded, clean)
    if progress:
        iter = tqdm.tqdm(iter, total=len(degraded))
    results = []

    estimator = PLCMOSEstimator(model_version=model_ver)
    intr = []
    nonintr = []
    lsds = []
    sisdrs = []
    for degraded_name, clean_name in iter:
        audio_degraded, sr_degraded = sf.read(degraded_name)
        audio_clean, sr_clean = sf.read(clean_name)
        lsd = LSD(audio_clean, audio_degraded)
        audio_degraded = librosa.resample(audio_degraded, 48000, 16000, res_type='kaiser_fast')
        audio_clean = librosa.resample(audio_clean, 48000, 16000, res_type='kaiser_fast')

        score = estimator.run(audio_degraded, audio_clean)
        results.append(
            {
                "filename_degraded": degraded_name,
                "filename_clean": clean_name,
                "intrusive" + str(model_ver): score[0],
                "non-intrusive" + str(model_ver): score[1],

            }
        )
        lsds.append(lsd)
        intr.append(score[0])
        nonintr.append(score[1])
        iter.set_description("Intru {}, Non-Intr {}, LSD {}, SISDR {}".format(sum(intr) / len(intr),
                                                                              sum(nonintr) / len(nonintr),
                                                                              sum(lsds) / len(lsds),
                                                                              sum(sisdrs) / len(sisdrs)))

    return pd.DataFrame(results)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--degraded", type=str, required=True, help="Path to folder with degraded audio files")
    parser.add_argument("--clean", type=str, required=True, help="Path to folder with clean audio files")
    parser.add_argument("--model-ver", type=int, default=1, help="Model version to use")
    parser.add_argument("--out-csv", type=str, default=None, help="Path to output CSV file, if CSV output is desired")
    parser.add_argument("--allow-set-size-difference", type=bool, default=True,
                        help="Set to true to allow the number of degraded and clean audio files to be different")
    args = parser.parse_args()

    results = run_with_defaults(args.degraded, args.clean, args.allow_set_size_difference, True, args.model_ver)

    if args.out_csv is not None:
        results.to_csv(args.out_csv)
    else:
        import pandas as pd

        pd.set_option("display.max_rows", None)
        # print(results)
        print("")