File size: 8,268 Bytes
7812756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import requests
import json
import pprint
import time
import sys
import os
import numpy as np

def check_internet_connectivity():
    """Check if we can connect to the internet"""
    print("Testing internet connectivity...")
    try:
        response = requests.get("https://huggingface.co", timeout=5)
        print(f"Connection to huggingface.co: Status {response.status_code}")
        return response.status_code == 200
    except Exception as e:
        print(f"Error connecting to huggingface.co: {str(e)}")
        return False

def check_model_repository():
    """Check if we can connect to the specific model repository"""
    print("Testing connection to model repository...")
    try:
        # Try to access the model repository
        url = "https://huggingface.co/allenai/longformer-base-4096"
        response = requests.get(url, timeout=5)
        print(f"Connection to model repository: Status {response.status_code}")
        return response.status_code == 200
    except Exception as e:
        print(f"Error connecting to model repository: {str(e)}")
        return False

def check_debug_endpoint(api_url):
    """Check the debug endpoint for diagnostic information"""
    print(f"Checking debug endpoint at {api_url.replace('/predict', '/debug')}...")
    try:
        response = requests.get(api_url.replace("/predict", "/debug"), timeout=10)
        if response.status_code == 200:
            debug_info = response.json()
            print("Debug information retrieved:")
            print(f"- API Status: {debug_info.get('api_status', 'Unknown')}")
            print(f"- Model Loaded: {debug_info.get('model_loaded', 'Unknown')}")
            print(f"- Cache Directory Exists: {debug_info.get('model_cache_exists', 'Unknown')}")
            print(f"- Temp Directory Writable: {debug_info.get('tmp_directory_writable', 'Unknown')}")
            
            # Check internet connectivity from the server
            internet_check = debug_info.get('internet_connectivity', {})
            print(f"- Server Internet Connectivity: {internet_check.get('status', 'Unknown')}")
            if internet_check.get('message'):
                print(f"  Message: {internet_check.get('message')}")
            
            # Check tokenizer test
            tokenizer_test = debug_info.get('tokenizer_test', {})
            print(f"- Tokenizer Test: {tokenizer_test.get('status', 'Unknown')}")
            if tokenizer_test.get('message'):
                print(f"  Message: {tokenizer_test.get('message')}")
            
            # Check disk space
            disk_space = debug_info.get('disk_space', {})
            if disk_space.get('status') == 'ok':
                print(f"- Disk Space: Total: {disk_space.get('total_gb', 0):.2f} GB, Used: {disk_space.get('used_gb', 0):.2f} GB, Free: {disk_space.get('free_gb', 0):.2f} GB ({disk_space.get('percent_used', 0):.1f}% used)")
            
            return debug_info
        else:
            print(f"Error accessing debug endpoint: Status {response.status_code}")
            print(response.text)
            return None
    except Exception as e:
        print(f"Exception when accessing debug endpoint: {str(e)}")
        return None

# API endpoint on Hugging Face Spaces
API_URL = "https://angusfung-kickstarter-success-prediction.hf.space/predict"

# Sample input data (similar to what would be in input.json)
campaign_data = {
  "raw_description": "Introducing the AquaGo: The Smart, Eco-Friendly Portable Water Purifier! Clean water is a basic human right β€” yet for millions around the world, it's a daily struggle. Whether you're an outdoor adventurer, traveling to remote areas, or preparing for emergencies, access to safe drinking water should never be a compromise. That's why we created **AquaGo**, a revolutionary portable water purifier that combines cutting-edge filtration technology, smart sensors, and sustainable materials β€” all packed into a sleek, lightweight design you can take anywhere.",
  "raw_blurb": "AquaGo is a smart, eco-friendly portable water purifier that delivers clean, safe drinking water anywhere.",
  "raw_risks": "Bringing a product to market involves complex engineering, regulatory approvals, and safety testing. Delays may occur due to certification or supply chain issues.",
  "raw_subcategory": "Gadgets",
  "raw_category": "Technology",
  "raw_country": "Canada",
  "funding_goal": 2000,
  "image_count": 8,
  "video_count": 3,
  "campaign_duration": 90,
  "previous_projects_count": 5,
  "previous_success_rate": 0.4,
  "previous_pledged": 18745.33,
  "previous_funding_goal": 23564.99
}

def predict_success(data, max_retries=3, retry_delay=10):
    """Send data to the API and get prediction results with retries"""
    for attempt in range(max_retries):
        try:
            # Make the POST request to the API
            print(f"Sending request to: {API_URL} (Attempt {attempt + 1}/{max_retries})")
            response = requests.post(API_URL, json=data, timeout=60)
            
            # Check if the request was successful
            if response.status_code == 200:
                return response.json()
            else:
                print(f"Error: {response.status_code}")
                print(response.text)
                
                if response.status_code == 500 and "Can't load tokenizer" in response.text:
                    print(f"The model might be downloading. Waiting {retry_delay} seconds before retry...")
                    time.sleep(retry_delay)
                else:
                    # For other errors, don't retry
                    return None
                    
        except Exception as e:
            print(f"Exception occurred: {str(e)}")
            print(f"Waiting {retry_delay} seconds before retry...")
            time.sleep(retry_delay)
    
    return None

def display_results(results):
    """Display the prediction results in a user-friendly way"""
    if not results:
        print("No results to display.")
        return
    
    print("\n===== KICKSTARTER SUCCESS PREDICTION =====\n")
    print(f"Success Probability: {results['success_probability']:.2%}")
    print(f"Predicted Outcome: {results['predicted_outcome']}")
    
    print("\n----- TOP INFLUENCING FACTORS -----")
    # Get the top 5 factors by absolute magnitude
    top_factors = sorted(
        results['shap_values'].items(), 
        key=lambda x: abs(float(x[1])), 
        reverse=True
    )[:5]
    
    for factor, value in top_factors:
        impact = "POSITIVE" if float(value) > 0 else "NEGATIVE"
        print(f"{factor}: {value:.4f} ({impact})")
    
    print("\n----- ALL SHAP VALUES -----")
    pp = pprint.PrettyPrinter(indent=2)
    pp.pprint(results['shap_values'])
    
    # Display Longformer embedding information if available
    if 'longformer_embedding' in results:
        embedding = np.array(results['longformer_embedding'])
        print("\n----- LONGFORMER EMBEDDING -----")
        print(f"Embedding Shape: {embedding.shape if hasattr(embedding, 'shape') else len(embedding)}")
        print(f"First 10 values: {embedding[:10]}")
        
        # Calculate some basic statistics on the embedding
        try:
            embedding_np = np.array(embedding)
            print(f"Mean: {np.mean(embedding_np):.4f}")
            print(f"Std: {np.std(embedding_np):.4f}")
            print(f"Min: {np.min(embedding_np):.4f}")
            print(f"Max: {np.max(embedding_np):.4f}")
        except Exception as e:
            print(f"Error calculating embedding statistics: {str(e)}")

# Main execution
if __name__ == "__main__":
    print("==== DIAGNOSTICS ====")
    print("Testing connectivity from client machine...")
    internet_ok = check_internet_connectivity()
    repo_ok = check_model_repository()
    
    debug_info = check_debug_endpoint(API_URL)
    
    print("\n==== PREDICTION TEST ====")
    if not internet_ok:
        print("WARNING: Internet connectivity issues detected on client machine.")
    
    if not repo_ok:
        print("WARNING: Cannot access model repository from client machine.")
    
    print("Sending prediction request...")
    results = predict_success(campaign_data, max_retries=2, retry_delay=10)
    display_results(results)