File size: 104,337 Bytes
9ff98d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
import collections
import sys

import numpy as np
import pandas as pd
import random
import torch
import time
import os
import json
import tifffile
import h3
import setup
from sklearn.linear_model import RidgeCV
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Subset
import utils
import models
import datasets
from calendar import monthrange
from torch.nn.functional import logsigmoid, softmax
import torch.nn as nn
from tqdm import tqdm
import csv

def format_tensor(tensor):
    # Convert tensor to list, then flatten to string
    tensor_list = tensor.tolist()  # Converts the tensor to a Python list
    return str(tensor_list).replace('\n', '').replace(' ', '')

class EvaluatorSNT:
    def __init__(self, train_params, eval_params):
        self.train_params = train_params
        self.eval_params = eval_params
        with open('paths.json', 'r') as f:
            paths = json.load(f)
        D = np.load(os.path.join(paths['snt'], 'snt_res_5.npy'), allow_pickle=True)
        D = D.item()
        self.loc_indices_per_species = D['loc_indices_per_species']
        self.labels_per_species = D['labels_per_species']
        self.taxa = D['taxa']
        self.obs_locs = D['obs_locs']
        self.obs_locs_idx = D['obs_locs_idx']
        self.pos_eval_data_loc = os.path.join(paths['data'], 'positive_eval_data.npz')
        self.background_eval_data_loc = os.path.join(paths['data'], '10000_background_negs.npz')

    def get_labels(self, species):
        species = str(species)
        lat = []
        lon = []
        gt = []
        for hx in self.data:
            cur_lat, cur_lon = h3.h3_to_geo(hx)
            if species in self.data[hx]:
                cur_label = int(len(self.data[hx][species]) > 0)
                gt.append(cur_label)
                lat.append(cur_lat)
                lon.append(cur_lon)
        lat = np.array(lat).astype(np.float32)
        lon = np.array(lon).astype(np.float32)
        obs_locs = np.vstack((lon, lat)).T
        gt = np.array(gt).astype(np.float32)
        return obs_locs, gt

    @torch.no_grad()
    def run_evaluation(self, model, enc, extra_input=None):
        results = {}

        # set seeds:
        np.random.seed(self.eval_params['seed'])
        random.seed(self.eval_params['seed'])

        # evaluate the geo model for each taxon
        results['per_species_average_precision_all'] = np.zeros((len(self.taxa)), dtype=np.float32)

        # get eval locations and apply input encoding
        obs_locs = torch.from_numpy(self.obs_locs).to(self.eval_params['device'])
        loc_feat = torch.cat([enc.encode(obs_locs), extra_input.expand(obs_locs.shape[0], -1)], dim=1) if extra_input is not None else enc.encode(obs_locs)

        # get classes to eval
        classes_of_interest = torch.zeros(len(self.taxa), dtype=torch.int64)
        for tt_id, tt in enumerate(self.taxa):
            class_of_interest = np.where(np.array(self.train_params['class_to_taxa']) == tt)[0]
            if len(class_of_interest) != 0:
                classes_of_interest[tt_id] = torch.from_numpy(class_of_interest)

        if self.eval_params['extract_pos']:
            assert 'HyperNet' in self.train_params['model']
            model = model.pos_enc
            self.train_params['model'] = 'ResidualFCNet'

        if ('CombinedModel' in self.train_params['model']) or ('MultiInputModel' in self.train_params['model']):
            with torch.no_grad():
                dummy_context_mask = None
                dummy_context_sequence = None

                # generate model predictions for classes of interest at eval locations
                loc_emb = model(x=loc_feat, context_sequence=dummy_context_sequence, context_mask=dummy_context_mask,
                                class_ids=classes_of_interest, return_feats=True)

                classes_of_interest = classes_of_interest.to(self.eval_params["device"])

                wt = model.get_eval_embeddings(classes_of_interest)

                pred_mtx = torch.matmul(loc_emb, torch.transpose(wt, 0, 1))

        elif  self.train_params['model'] == 'VariableInputModel':
            with torch.no_grad():
                loc_emb = model.get_loc_emb(x=loc_feat)

                classes_of_interest = classes_of_interest.to(self.eval_params["device"])

                wt = model.get_eval_embeddings(classes_of_interest)

                pred_mtx = torch.matmul(loc_emb, torch.transpose(wt, 0, 1))

        elif 'HyperNet' not in self.train_params['model'] and not (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
            with torch.no_grad():
                # generate model predictions for classes of interest at eval locations
                loc_emb = model(loc_feat, return_feats=True)
                wt = model.class_emb.weight[classes_of_interest, :]
                pred_mtx = torch.matmul(loc_emb, torch.transpose(wt, 0, 1))
        elif (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
            if self.train_params['model'] == 'ResidualFCNet':
                import datasets
                # from sklearn.linear_model import LogisticRegression
                # with open('paths.json', 'r') as f:
                #     paths = json.load(f)
                # data_dir = paths['train']
                # obs_file = os.path.join(data_dir, self.train_params['obs_file'])
                # taxa_file = os.path.join(data_dir, self.train_params['taxa_file'])
                # taxa_file_snt = os.path.join(data_dir, 'taxa_subsets.json')

                # taxa_of_interest = datasets.get_taxa_of_interest(self.train_params['species_set'], self.train_params['num_aux_species'],
                #                                         self.train_params['aux_species_seed'], self.train_params['taxa_file'], taxa_file_snt)
                obs_file = self.pos_eval_data_loc
                locs, labels, _, dates, _, _ = datasets.load_eval_inat_data(obs_file)
                unique_taxa, class_ids = np.unique(labels, return_inverse=True)
                class_to_taxa = unique_taxa.tolist()
                # idx_ss = datasets.get_idx_subsample_observations(labels, self.eval_params['num_samples'], random.randint(0,2**32), None, -1)
                idx_ss = datasets.get_idx_subsample_observations_eval(labels=labels, hard_cap=self.eval_params['num_samples'])
                locs = torch.from_numpy(np.array(locs))
                labels = torch.from_numpy(np.array(class_ids))
                locs = locs[idx_ss]
                labels = labels[idx_ss]
                with torch.no_grad():
                    pos_examples = {}
                    for tt in self.taxa:
                        c = class_to_taxa.index(tt)
                        pos_examples[tt] = locs[labels == c]
                        pos_examples[tt] = model(enc.encode(pos_examples[tt].to(self.eval_params['device'])), return_feats=True).cpu()

                    # MAX VERSION # MAX VERSION # MAX VERSION
                    # random negs
                    neg_examples = utils.rand_samples(10000, self.eval_params['device'], rand_type='spherical')
                    obs_file = self.background_eval_data_loc
                    neg_locs, _, _, _, _, _ = datasets.load_eval_inat_data(obs_file)
                    neg_locs = torch.from_numpy(neg_locs)
                    if extra_input is not None:
                        raise NotImplementedError('extra_input provided')
                    # add target negs
                    neg_examples = model(torch.cat([enc.encode(neg_examples, normalize=False), enc.encode(
                        neg_locs[torch.randperm(neg_locs.shape[0], device=locs.device)[:10000]].clone().to(
                            self.eval_params['device']), normalize=True)]), return_feats=True).cpu()
                    loc_emb = model(loc_feat, return_feats=True)
            elif self.train_params['model'] == 'HyperNet':
                import datasets
                # from sklearn.linear_model import LogisticRegression
                # with open('paths.json', 'r') as f:
                #     paths = json.load(f)
                # data_dir = paths['train']
                # obs_file = os.path.join(data_dir, self.train_params['obs_file'])
                # taxa_file = os.path.join(data_dir, self.train_params['taxa_file'])
                # taxa_file_snt = os.path.join(data_dir, 'taxa_subsets.json')
                #
                # taxa_of_interest = datasets.get_taxa_of_interest(self.train_params['species_set'], self.train_params['num_aux_species'],
                #                                         self.train_params['aux_species_seed'], self.train_params['taxa_file'], taxa_file_snt)
                #
                obs_file = self.pos_eval_data_loc
                locs, labels, _, dates, _, _ = datasets.load_eval_inat_data(obs_file)
                unique_taxa, class_ids = np.unique(labels, return_inverse=True)
                class_to_taxa = unique_taxa.tolist()

                if self.eval_params['num_samples'] > 0:
                    # idx_ss = datasets.get_idx_subsample_observations(labels, self.eval_params['num_samples'], random.randint(0,2**32), None, -1)
                    idx_ss = datasets.get_idx_subsample_observations_eval(labels=labels, hard_cap=self.eval_params['num_samples'])
                    locs = torch.from_numpy(np.array(locs)[idx_ss])
                    labels = torch.from_numpy(np.array(class_ids)[idx_ss])
                    with torch.no_grad():
                        pos_examples = {}
                        for tt in self.taxa:
                            c = class_to_taxa.index(tt)
                            pos_examples[tt] = locs[labels == c]
                            pos_examples[tt] = model.pos_enc(enc.encode(pos_examples[tt].to(self.eval_params['device']))).cpu()
                        # random negs
                        neg_examples = utils.rand_samples(10000, self.eval_params['device'], rand_type='spherical')
                        obs_file = self.background_eval_data_loc
                        neg_locs, _, _, _, _, _ = datasets.load_eval_inat_data(obs_file)
                        neg_locs = torch.from_numpy(neg_locs)
                        if extra_input is not None:
                            raise NotImplementedError('extra_input provided')
                        neg_examples = model.pos_enc(torch.cat([enc.encode(neg_examples, normalize=False), enc.encode(neg_locs[torch.randperm(neg_locs.shape[0], device=locs.device)[:10000]].clone().to(self.eval_params['device']), normalize=True)])).cpu()
                loc_emb = model.pos_enc(loc_feat)
                #embs = torch.load(self.train_params['text_emb_path']) #TODO
                #embs1 = torch.load('experiments/gpt_data.pt', weights_only=False)
                embs1 = torch.load('experiments/gpt_data.pt', map_location='cpu')
                #embs1 = torch.load('ldsdm_data.pt')
                emb_ids1 = embs1['taxon_id'].tolist()
                keys1 = embs1['keys']
                embs1 = embs1['data']
                # embs2 doesn't even do anything. Could just remove the whole thing, but that is how it is in Max's code
                # MINE MINE MINE MINE MINE
                embs2 = torch.load('experiments/wiki_data_v4.pt')
                # MAX MAX MAX MAX
                # embs2 = torch.load('wiki_data_v3.pt')
                emb_ids2 = embs2['taxon_id'].tolist()
                keys2 = embs2['keys']
                embs2 = embs2['data']
            else:
                raise NotImplementedError('Eval for zero-shot not implemented')
        # if self.eval_params['num_samples'] == -1 and not (('CombinedModel' in self.train_params['model']) or ('MultiInputModel' in self.train_params['model'] or )):
        if self.eval_params['num_samples'] == -1 and not (self.train_params['model'] in ['CombinedModel', 'MultiInputModel', 'VariableInputModel', 'ResidualFCNet']):
            loc_emb = model.pos_enc(loc_feat)
        elif self.eval_params['num_samples'] == -1 and not (self.train_params['model'] in ['CombinedModel', 'MultiInputModel', 'VariableInputModel']):
            loc_emb = model.forward(loc_feat, return_feats=True)
        split_rng = np.random.default_rng(self.eval_params['split_seed'])
        write_gt_once = False
        #TODO: tt is the iNat taxa id for the taxa we are calculating AP for rn, tt_id is the index in the dictionary
        #ap_csv = "per_species_average_precision_valid.csv"
        #taxa_id_csv = "per_species_taxa_id_valid.csv"
        # with open(taxa_id_csv, mode='w', newline='') as csv_file:
        #     writer = csv.writer(csv_file)
    
        #     # If the array is multi-dimensional (e.g., 2D), iterate over rows
        #     if isinstance(self.taxa, np.ndarray):
        #         for value in self.taxa:
        #             writer.writerow([value])
        #     else:
        #         # If it's a flat array, directly write the values
        #         writer.writerow(per_species_average_precision_valid)

        range, range_locs = [], []
        for tt_id, tt in tqdm(enumerate(self.taxa)):

            class_of_interest = np.where(np.array(self.train_params['class_to_taxa']) == tt)[0]
            if len(class_of_interest) == 0 and not (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
                # taxa of interest is not in the model
                results['per_species_average_precision_all'][tt_id] = np.nan
            # this only effects my models
            elif self.train_params['model'] == 'VariableInputModel':
                # generate ground truth labels for current taxa
                cur_loc_indices = np.array(self.loc_indices_per_species[tt_id])
                cur_labels = np.array(self.labels_per_species[tt_id])

                # apply per-species split:
                assert self.eval_params['split'] in ['all', 'val', 'test']
                if self.eval_params['split'] != 'all':
                    num_val = np.floor(len(cur_labels) * self.eval_params['val_frac']).astype(int)
                    idx_rand = split_rng.permutation(len(cur_labels))
                    if self.eval_params['split'] == 'val':
                        idx_sel = idx_rand[:num_val]
                    elif self.eval_params['split'] == 'test':
                        idx_sel = idx_rand[num_val:]
                    cur_loc_indices = cur_loc_indices[idx_sel]
                    cur_labels = cur_labels[idx_sel]
                cur_labels = (torch.from_numpy(cur_labels).to(self.eval_params['device']) > 0).float()

                with torch.no_grad():
                    logits = pred_mtx[:, tt_id]
                    preds = torch.sigmoid(logits)
                    #TODO metric value is calcuated
                    #this is how we get the predictions, just matching the hexs for the spots we are interested in. 
                    results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(
                        cur_labels,
                        preds[cur_loc_indices]).item()
                continue
            elif self.train_params['model'] == 'MultiInputModel':
                # generate ground truth labels for current taxa
                #todo: ask max, are the loc_indices the h3 indices at res 5? 
                #these are the inidices of the locations of where we have evaluations
                cur_loc_indices = np.array(self.loc_indices_per_species[tt_id])
                #loc_indices_per_species_array = np.array(self.loc_indices_per_species[tt_id])
                #this is the answer key 
                cur_labels = np.array(self.labels_per_species[tt_id]) #87373 "0."
                #labels_per_species_array = np.array(self.labels_per_species[tt_id]) #174746 '0'

                # apply per-species split:
                assert self.eval_params['split'] in ['all', 'val', 'test']
                if self.eval_params['split'] != 'all':
                    num_val = np.floor(len(cur_labels) * self.eval_params['val_frac']).astype(int)
                    idx_rand = split_rng.permutation(len(cur_labels))
                    if self.eval_params['split'] == 'val':
                        idx_sel = idx_rand[:num_val]
                    elif self.eval_params['split'] == 'test':
                        idx_sel = idx_rand[num_val:]
                    cur_loc_indices = cur_loc_indices[idx_sel]
                    cur_labels = cur_labels[idx_sel]
                cur_labels = (torch.from_numpy(cur_labels).to(self.eval_params['device']) > 0).float()
                #print('printing location testing')
                #matching_locations = obs_locs[loc_indices_per_species_array[labels_per_species_array == 1]]#21737 this is bigger because we take out the all and val locations
                matching_locations = obs_locs[cur_loc_indices[cur_labels == 1]] #10849
                range_locs.append(matching_locations)
                #print(f'matching locations len: {len(matching_locations)}')
                range.append(cur_labels)
                #print(f'range cur labels len: {cur_labels.sum()}')
                #print(f'number of locations matches: matching locations: {np.shape(matching_locations)} and cur_labels: {cur_labels.sum()}')
               
                # if not write_gt_once:
                #     snt_labels_csv = f"data/plot/taxa_locs/snt_locations_{tt}.csv"
                #     with open(snt_labels_csv, mode='w', newline='') as csv_file:
                #         writer = csv.writer(csv_file)
                
                #         # If the array is multi-dimensional (e.g., 2D), iterate over rows
                #         if isinstance(matching_locations, np.ndarray):
                #             for value in matching_locations:
                #                 writer.writerow([value])
                #         else:
                #             # If it's a flat array, directly write the values
                #             writer.writerow(matching_locations)
                #print(f'current labels snt: {np.shape(cur_labels)}')

                with torch.no_grad():
                    logits = pred_mtx[:, tt_id]
                    preds = torch.sigmoid(logits)
                    #TODO metric value is calcuated
                    results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(
                        cur_labels,
                        preds[cur_loc_indices]).item()
                continue

            # MINE MINE MINE MINE MINE MINE
            # elif self.eval_params['num_samples'] == -1:
            #     gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
            #     gt[self.data['taxa_presence'][str(tt)]] = 1.0
            #     species_w = model.species_params[self.train_params['class_to_taxa'].index(tt)]
            #     preds = loc_emb @ species_w.detach()
            #     results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds).item()
            #     continue
            else:
                # generate ground truth labels for current taxa
                cur_loc_indices = np.array(self.loc_indices_per_species[tt_id])
                cur_labels = np.array(self.labels_per_species[tt_id])

                # apply per-species split:
                assert self.eval_params['split'] in ['all', 'val', 'test']
                if self.eval_params['split'] != 'all':
                    num_val = np.floor(len(cur_labels) * self.eval_params['val_frac']).astype(int)
                    idx_rand = split_rng.permutation(len(cur_labels))
                    if self.eval_params['split'] == 'val':
                        idx_sel = idx_rand[:num_val]
                    elif self.eval_params['split'] == 'test':
                        idx_sel = idx_rand[num_val:]
                    cur_loc_indices = cur_loc_indices[idx_sel]
                    cur_labels = cur_labels[idx_sel]
                cur_labels = (torch.from_numpy(cur_labels).to(self.eval_params['device']) > 0).float()

                ##########################################################################################
                #
                ##########################################################################################
                if self.eval_params['num_samples'] == -1 and self.train_params['model'] == 'HyperNet':
                    species_w = model.species_params[self.train_params['class_to_taxa'].index(tt)]
                    preds = loc_emb @ species_w.detach()
                    results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(cur_labels,
                                                                                                                 preds[cur_loc_indices]).item()
                    continue
                elif self.eval_params['num_samples'] == -1 and self.train_params['model'] == 'ResidualFCNet':
                    preds = model.eval_single_class(x=loc_emb, class_of_interest=self.train_params['class_to_taxa'].index(tt)).detach()
                    # species_w = model.species_params[self.train_params['class_to_taxa'].index(tt)]
                    # preds = loc_emb @ species_w.detach()
                    results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(cur_labels,
                                                                                                                 preds[cur_loc_indices]).item()
                    continue
                if 'HyperNet' not in self.train_params['model'] and not (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
                    # extract model predictions for current taxa from prediction matrix
                    pred = pred_mtx[cur_loc_indices, tt_id]
                elif self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0:
                    if self.train_params['model'] == 'ResidualFCNet':
                        if self.eval_params['num_samples'] == 0:
                            X = torch.cat([pos_examples[tt], neg_examples], dim=0).to(self.eval_params['device'])
                            w = torch.nn.Parameter(torch.zeros(X.shape[1], 1, device=self.eval_params['device']))
                            nn.init.xavier_uniform_(w)
                            pred = torch.sigmoid(((loc_emb @ w)))[cur_loc_indices].flatten()
                        else:
                            X = torch.cat([pos_examples[tt], neg_examples], dim=0).to(self.eval_params['device'])
                            y = torch.zeros(X.shape[0], dtype=torch.long, device=self.eval_params['device'])
                            y[:pos_examples[tt].shape[0]] = 1
                            # MINE MINE MINE MINE MINE MINE
                            # clf = LogisticRegression(class_weight='balanced', fit_intercept=False, C=0.05, max_iter=200, random_state=0).fit(X.numpy(), y.numpy())
                            # #pred = torch.from_numpy(clf.predict_proba(loc_emb.cpu()))[:,1]
                            # pred = torch.sigmoid(((loc_emb @ (torch.from_numpy(clf.coef_).cuda().float().T)) + torch.from_numpy(clf.intercept_).cuda().float()).squeeze(-1))[cur_loc_indices]
                            # MAX MAX MAX MAX MAX MAX MAX MAX MAX

                            #clf = LogisticRegression(class_weight='balanced', fit_intercept=False, C=0.05, max_iter=200, random_state=0).fit(X.numpy(), y.numpy())

                            C = 0.05
                            w = torch.nn.Parameter(torch.zeros(X.shape[1], 1, device=self.eval_params['device']))
                            opt = torch.optim.Rprop([w], lr=0.001)
                            crit = torch.nn.BCEWithLogitsLoss()
                            crit2 = torch.nn.MSELoss()
                            with torch.set_grad_enabled(True):
                                for i in range(40):
                                    opt.zero_grad()
                                    output = X @ w
                                    yhat = y.float()[:, None]
                                    loss = 0.5 * crit(output[yhat == 0], yhat[yhat == 0]) + 0.5 * crit(output[yhat == 1],
                                                                                                       yhat[
                                                                                                           yhat == 1]) + 1 / (
                                                       C * len(pos_examples[tt])) * crit2(w, 0 * w)
                                    loss.backward()
                                    opt.step()
                            #pred = torch.from_numpy(clf.predict_proba(loc_emb.cpu()))[:,1]
                            # pred = torch.sigmoid(((loc_emb @ w.cuda())))[cur_loc_indices].flatten()
                            pred = torch.sigmoid(((loc_emb @ w)))[cur_loc_indices].flatten()
                            #pred = torch.sigmoid(((loc_emb @ (torch.from_numpy(clf.coef_).cuda().float().T)) + torch.from_numpy(clf.intercept_).cuda().float()).squeeze(-1))[cur_loc_indices]
                    elif self.train_params['model'] == 'HyperNet':
                        if tt in emb_ids1:
                            embs = embs1
                            emb_ids = emb_ids1
                            keys = keys1
                        else:
                            print('yes')
                            results['per_species_average_precision_all'][tt_id] = 0.0
                            continue
                            embs = embs2
                            emb_ids = emb_ids2
                            keys = keys2
                        if tt not in emb_ids:
                            results['per_species_average_precision_all'][tt_id] = 0.0
                            continue
                        with torch.no_grad():
                            sec_ind = emb_ids.index(tt)
                            sections = [i for i,x in enumerate(keys) if x[0] == sec_ind]
                            def get_feat(x):
                                species = model.species_enc(model.species_emb.zero_shot(x))
                                species_w, species_b = species[..., :-1], species[..., -1:]
                                if self.eval_params['num_samples'] == 0:
                                    out = loc_emb @ (species_w.detach()).T
                                    return out
                                X = torch.cat([pos_examples[tt], neg_examples], dim=0).to(self.eval_params['device'])
                                y = torch.zeros(X.shape[0], dtype=torch.long, device=self.eval_params['device'])
                                y[:pos_examples[tt].shape[0]] = 1
                                C = 0.05
                                w = torch.nn.Parameter(torch.zeros_like(species_w,device=self.eval_params['device']))
                                opt = torch.optim.Rprop([w], lr=0.001)
                                crit = torch.nn.BCEWithLogitsLoss()
                                crit2 = torch.nn.MSELoss()
                                with torch.set_grad_enabled(True):
                                    for i in range(40):
                                        opt.zero_grad()
                                        output = (X @ (w + species_w.detach()).T) + 0*species_b.squeeze(-1)
                                        yhat = y.float()[:, None].repeat(1, w.shape[0])
                                        loss = 0.5*crit(output[yhat == 0], yhat[yhat == 0]) + 0.5*crit(output[yhat == 1], yhat[yhat == 1]) + \
                                            1/(C*len(pos_examples[tt])) * crit2(w, 0*w)
                                        loss.backward()
                                        opt.step()
                                        #print(i, loss.item())
                                #print(' ')
                                out = loc_emb @ (w.data + species_w.detach()).T
                                out = (out + 0*species_b.squeeze(-1))
                                return out
                            # average precision score:
                            yfeats = torch.cat([embs[section][None].to(self.eval_params['device']) for section in sections])
                            preds = get_feat(yfeats)
                            if len(sections) > 1:#'habitat', 'overview_summary'
                                kws = ['text', 'range', 'distribution', 'habitat'] if len(keys) == len(keys2) else [self.eval_params['text_section']]
                                best_sections = [i for i,s in enumerate(sections) if any((x in keys[s][1].lower() for x in kws))]
                                results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(cur_labels, preds[cur_loc_indices][:,best_sections].mean(dim=1)).item()
                            else:
                                results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(cur_labels, preds[cur_loc_indices][:,0].mean(dim=1)).item()
                            continue
                else:
                    raise NotImplementedError('Eval for hypernet not implemented')
                    pred = preds[:,tt_id%32]
                # compute the AP for each taxa
                results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(cur_labels, pred).item()

        valid_taxa = ~np.isnan(results['per_species_average_precision_all'])

        # store results
        #TODO: this will have AP values for every species 
        #tt_id
        per_species_average_precision_valid = results['per_species_average_precision_all'][valid_taxa]
        
        results['mean_average_precision'] = per_species_average_precision_valid.mean()
        results['num_eval_species_w_valid_ap'] = valid_taxa.sum()
        results['num_eval_species_total'] = len(self.taxa)

        taxas_and_ap_csv = "taxas_ap_range.csv"
        #ap_csv = "per_species_taxa_id_valid.csv"
        print(list(map(lambda row:len(row) ,range)))
        zipped_data = zip(self.taxa, per_species_average_precision_valid, list(map(lambda row:int(row.sum()),range)), range_locs)
        with open(taxas_and_ap_csv, mode='w', newline='') as csv_file:
            writer = csv.writer(csv_file)
            
            # Write the header (optional)
            writer.writerow(['Taxa ID', 'Average Precision','Range Size', 'Range'])
            
            # Write the zipped data
            for taxa, ap, range_size, tensor_range in zipped_data:
                # Flatten tensor to a single-line string
                tensor_range_str = format_tensor(tensor_range)
                writer.writerow([taxa, ap, range_size, tensor_range_str])
        # with open(ap_csv, mode='w', newline='') as csv_file:
        #     writer = csv.writer(csv_file)
            
        #     # Write the zipped data
        #     writer.writerows(per_species_average_precision_valid)

        return results

    def report(self, results):
        for field in ['mean_average_precision', 'num_eval_species_w_valid_ap', 'num_eval_species_total']:
            print(f'{field}: {results[field]}')

class EvaluatorIUCN:

    def __init__(self, train_params, eval_params):
        self.train_params = train_params
        print(train_params['text_num_layers'],train_params['text_batchnorm'],train_params['text_hidden_dim'])#TODO
        self.eval_params = eval_params
        with open('paths.json', 'r') as f:
            paths = json.load(f)
        with open(os.path.join(paths['iucn'], 'iucn_res_5.json'), 'r') as f:
            self.data = json.load(f)
        self.obs_locs = np.array(self.data['locs'], dtype=np.float32)
        self.taxa = [int(tt) for tt in self.data['taxa_presence'].keys()]
        self.pos_eval_data_loc = os.path.join(paths['data'], 'positive_eval_data.npz')
        self.background_eval_data_loc = os.path.join(paths['data'], '10000_background_negs.npz')

    @torch.no_grad()
    def run_evaluation(self, model, enc, extra_input=None):
        results = {}
        #self.train_params['model'] = 'ResidualFCNet'
        #m = model
        #model = lambda x, return_feats=True: m.pos_enc(x)
        results['per_species_average_precision_all'] = np.zeros(len(self.taxa), dtype=np.float32)
        # get eval locations and apply input encoding
        obs_locs = torch.from_numpy(self.obs_locs).to(self.eval_params['device'])
        loc_feat = torch.cat([enc.encode(obs_locs), extra_input.expand(obs_locs.shape[0], -1)], dim=1) if extra_input is not None else enc.encode(obs_locs)

        # get classes to eval
        # classes_of_interest = torch.zeros(len(self.taxa), dtype=torch.int64)
        classes_of_interest = np.zeros(len(self.taxa))
        array_class_to_taxa = np.array(self.train_params['class_to_taxa'])
        for tt_id, tt in enumerate(self.taxa):
            class_of_interest = np.where(array_class_to_taxa == tt)[0]
            if len(class_of_interest) != 0:
                classes_of_interest[tt_id] = class_of_interest
        classes_of_interest = torch.from_numpy(classes_of_interest).to(dtype=torch.long, device=self.eval_params['device'])

        # MINE MINE MINE
        # classes_of_interest = classes_of_interest.to(self.eval_params['device'])

        if self.eval_params['extract_pos']:
            assert 'HyperNet' in self.train_params['model']
            model = model.pos_enc
            self.train_params['model'] = 'ResidualFCNet'
        # Should only effect mine
        if ('CombinedModel' in self.train_params['model']) or ('MultiInputModel' in self.train_params['model']):
            with torch.no_grad():
                dummy_context_mask = None
                dummy_context_sequence = None
                # generate model predictions for classes of interest at eval locations
                loc_emb = model(x=loc_feat, context_sequence=dummy_context_sequence, context_mask=dummy_context_mask,
                                class_ids=classes_of_interest, return_feats=True)
                wt = model.get_eval_embeddings(classes_of_interest)
                print("Creating IUCN prediction matrix")
                pred_mtx = torch.matmul(loc_emb, torch.transpose(wt, 0, 1))

        elif  self.train_params['model'] == 'VariableInputModel':
            with torch.no_grad():
                loc_emb = model.get_loc_emb(x=loc_feat)

                classes_of_interest = classes_of_interest.to(self.eval_params["device"])

                wt = model.get_eval_embeddings(classes_of_interest)

                wt2 = model.get_ema_embeddings(classes_of_interest)
                # technically with my mock transformer I could just directly access the class embeddings but
                # I will need to use the emas when I move to the true transformer model (I think)

                # wt = model.class_emb.weight[classes_of_interest, :]

                pred_mtx = torch.matmul(loc_emb, torch.transpose(wt, 0, 1))

        elif 'HyperNet' not in self.train_params['model'] and not (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
            # generate model predictions for classes of interest at eval locations
            loc_emb = model(loc_feat, return_feats=True)
            wt = model.class_emb.weight[classes_of_interest, :]
            pred_mtx = torch.matmul(loc_emb, torch.transpose(wt, 0, 1))
        elif (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
            if self.train_params['model'] == 'ResidualFCNet':
                import datasets
                # from sklearn.linear_model import LogisticRegression
                # with open('paths.json', 'r') as f:
                #     paths = json.load(f)
                # data_dir = paths['train']
                # obs_file = os.path.join(data_dir, self.train_params['obs_file'])
                # taxa_file = os.path.join(data_dir, self.train_params['taxa_file'])
                # taxa_file_snt = os.path.join(data_dir, 'taxa_subsets.json')
                #
                # taxa_of_interest = datasets.get_taxa_of_interest(self.train_params['species_set'], self.train_params['num_aux_species'],
                #                                         self.train_params['aux_species_seed'], self.train_params['taxa_file'], taxa_file_snt)
                obs_file = self.pos_eval_data_loc
                locs, labels, _, dates, _, _ = datasets.load_eval_inat_data(obs_file)
                unique_taxa, class_ids = np.unique(labels, return_inverse=True)
                class_to_taxa = unique_taxa.tolist()
                # idx_ss = datasets.get_idx_subsample_observations(labels, self.eval_params['num_samples'], random.randint(0,2**32), None, -1)
                idx_ss = datasets.get_idx_subsample_observations_eval(labels=labels, hard_cap=self.eval_params['num_samples'])
                locs = torch.from_numpy(np.array(locs))
                labels = torch.from_numpy(np.array(class_ids))
                locs = locs[idx_ss]
                labels = labels[idx_ss]
                # MINE MINE MINE MINE MINE MINE MINE MINE MINE
                # with torch.no_grad():
                #     pos_examples = {}
                #     for tt in self.taxa:
                #         c = class_to_taxa.index(tt)
                #         pos_examples[tt] = locs[labels == c]
                #         pos_examples[tt] = model(enc.encode(pos_examples[tt].to(self.eval_params['device'])), return_feats=True).cpu()
                #
                #     if self.eval_params['target_background']:
                #         target_background_dataset = datasets.get_train_data(params=self.train_params)
                #         # print("CHECK IF THIS TARGET NEGS THING IS WORKING PROPERLY WHEN SERVER WORKS")
                #         # print("IT MAY INCLUDE EVAL SPECIES / ONLY EVAL SPECIES") # it only includes the backbone species currently - good
                #
                #         random_negs = utils.rand_samples(5000, self.eval_params['device'], rand_type='spherical')
                #
                #         # Get the total number of locations
                #         total_locs = len(target_background_dataset.locs)
                #
                #         # If there are more than 5000 locations, sample 5000
                #         if total_locs > 5000:
                #             indices = np.random.choice(total_locs, 5000, replace=False)
                #             target_negs = target_background_dataset.locs[indices].to(self.eval_params['device'])
                #         else:
                #             target_negs = target_background_dataset.locs.to(self.eval_params['device'])
                #         # print('CHECK THE FORMAT OF THESE TARGET LOCS COMPARED TO NEG LOCS') # look good
                #
                #         neg_examples = torch.vstack((random_negs, target_negs))
                #
                #         del target_background_dataset
                #
                #     else:
                #         neg_examples = utils.rand_samples(10000, self.eval_params['device'], rand_type='spherical')
                #     if extra_input is not None:
                #         raise NotImplementedError('extra_input provided')
                #     neg_examples = model(enc.encode(neg_examples, normalize=False), return_feats=True).cpu()
                #     print("You can probably speed eval back up once the server is available by changing this shit back")
                #
                #     # Function to process data in batches
                #     def process_in_batches(model, loc_feat, batch_size=64):
                #         loc_emb = []
                #         for i in range(0, len(loc_feat), batch_size):
                #             batch = loc_feat[i:i + batch_size]
                #             with torch.no_grad():
                #                 batch_emb = model(batch, return_feats=True)
                #             loc_emb.append(batch_emb)
                #         return torch.cat(loc_emb, dim=0)  # Concatenate the results
                #
                #     # loc_emb = model(loc_feat, return_feats=True)
                #     loc_emb = process_in_batches(model, loc_feat, batch_size=2048)
                pos_examples = {}
                for tt in self.taxa:
                    c = class_to_taxa.index(tt)
                    pos_examples[tt] = locs[labels == c]
                    pos_examples[tt] = model(enc.encode(pos_examples[tt].to(self.eval_params['device'])), return_feats=True).cpu()
                obs_file = self.background_eval_data_loc
                neg_locs, _, _, _, _, _ = datasets.load_eval_inat_data(obs_file)
                neg_locs = torch.from_numpy(neg_locs)
                #random negs
                neg_examples = utils.rand_samples(10000, self.eval_params['device'], rand_type='spherical')
                if extra_input is not None:
                    raise NotImplementedError('extra_input provided')
                # add target negs
                neg_examples = model(torch.cat([enc.encode(neg_examples, normalize=False), enc.encode(neg_locs[torch.randperm(neg_locs.shape[0], device=locs.device)[:10000]].clone().to(self.eval_params['device']), normalize=True)]), return_feats=True).cpu()
                loc_emb = model(loc_feat, return_feats=True)
            elif self.train_params['model'] == 'HyperNet':
                import datasets
                # from sklearn.linear_model import LogisticRegression
                # with open('paths.json', 'r') as f:
                #     paths = json.load(f)
                # data_dir = paths['train']
                # obs_file = os.path.join(data_dir, self.train_params['obs_file'])
                # taxa_file = os.path.join(data_dir, self.train_params['taxa_file'])
                # taxa_file_snt = os.path.join(data_dir, 'taxa_subsets.json')
                #
                # taxa_of_interest = datasets.get_taxa_of_interest(self.train_params['species_set'], self.train_params['num_aux_species'],
                #                                         self.train_params['aux_species_seed'], self.train_params['taxa_file'], taxa_file_snt)
                obs_file = self.pos_eval_data_loc
                locs, labels, _, dates, _, _ = datasets.load_eval_inat_data(obs_file)
                # MINE MINE MINE MINE
                # unique_taxa, class_ids = np.unique(labels, return_inverse=True)
                # class_to_taxa = unique_taxa.tolist()
                # idx_ss = datasets.get_idx_subsample_observations(labels, self.eval_params['num_samples'], random.randint(0,2**32), None, -1)
                # locs = torch.from_numpy(np.array(locs))
                # labels = torch.from_numpy(np.array(class_ids))
                # locs = locs[idx_ss]
                # labels = labels[idx_ss]
                # with torch.no_grad():
                # MAX MAX MAX MAX MAX MAX MAX
                unique_taxa, class_ids, class_counts = np.unique(labels, return_inverse=True, return_counts=True)
                class_counts = class_counts.clip(max=1000)
                if self.eval_params['num_samples'] > 0:
                    class_to_taxa = unique_taxa.tolist()
                    idx_ss = datasets.get_idx_subsample_observations_eval(labels=labels, hard_cap=self.eval_params['num_samples'])
                    # idx_ss = datasets.get_idx_subsample_observations(labels, self.eval_params['num_samples'], random.randint(0,2**32), None, -1)
                    locs = torch.from_numpy(np.array(locs))
                    labels = torch.from_numpy(np.array(class_ids))
                    locs = locs[idx_ss]
                    labels = labels[idx_ss]
                    pos_examples = {}
                    for tt in self.taxa:
                        c = class_to_taxa.index(tt)
                        pos_examples[tt] = locs[labels == c]
                        pos_examples[tt] = model.pos_enc(enc.encode(pos_examples[tt].to(self.eval_params['device']))).cpu()
                    # MINE MINE MINE MINE MINE MINE MINE MINE
                    # if self.eval_params['target_background']:
                    #
                    #     target_background_dataset = datasets.get_train_data(params=self.train_params)
                    #     # print("CHECK IF THIS TARGET NEGS THING IS WORKING PROPERLY WHEN SERVER WORKS")
                    #     # print("IT MAY INCLUDE EVAL SPECIES / ONLY EVAL SPECIES")
                    #
                    #     random_negs = utils.rand_samples(5000, self.eval_params['device'], rand_type='spherical')
                    #
                    #     # Get the total number of locations
                    #     total_locs = len(target_background_dataset.locs)
                    #
                    #     # If there are more than 5000 locations, sample 5000
                    #     if total_locs > 5000:
                    #         indices = np.random.choice(total_locs, 5000, replace=False)
                    #         target_negs = target_background_dataset.locs[indices].to(self.eval_params['device'])
                    #     else:
                    #         target_negs = target_background_dataset.locs.to(self.eval_params['device'])
                    #     # print('CHECK THE FORMAT OF THESE TARGET LOCS COMPARED TO NEG LOCS')
                    #
                    #     neg_examples = torch.vstack((random_negs, target_negs))
                    #
                    #     del target_background_dataset
                    #
                    # else:
                    #     neg_examples = utils.rand_samples(10000, self.eval_params['device'], rand_type='spherical')
                    # MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX
                    obs_file = self.background_eval_data_loc
                    neg_locs, _, _, _, _, _ = datasets.load_eval_inat_data(obs_file)
                    neg_locs = torch.from_numpy(neg_locs)
                    # random negs
                    neg_examples = utils.rand_samples(10000, self.eval_params['device'], rand_type='spherical')
                    if extra_input is not None:
                        raise NotImplementedError('extra_input provided')
                    # MINE MINE MINE
                    # neg_examples = model.pos_enc(enc.encode(neg_examples, normalize=False)).cpu()
                    # MAX MAX MAX MAX MAX MAX MAX
                    # add target negs
                    neg_examples = model.pos_enc(torch.cat([enc.encode(neg_examples, normalize=False), enc.encode(neg_locs[torch.randperm(neg_locs.shape[0], device=locs.device)[:10000]].clone().to(self.eval_params['device']), normalize=True)])).cpu()

                #embs = torch.load(self.train_params['text_emb_path']) #TODO
                embs = torch.load('gpt_data.pt', weights_only=False)
                #embs = torch.load('ldsdm_data.pt')
                emb_ids = embs['taxon_id'].tolist()
                keys = embs['keys']
                embs = embs['data']
                # embs2 doesn't even do anything. Could just remove the whole thing, but that is how it is in Max's code
                # MINE MINE MINE
                embs2 = torch.load('wiki_data_v4.pt', weights_only=False)
                # MAX MAX MAX
                # embs2 = torch.load('wiki_data_v3.pt')
                emb_ids2 = embs2['taxon_id'].tolist()
                keys2 = embs2['keys']
                embs2 = embs2['data']
                loc_emb = model.pos_enc(loc_feat)
            else:
                raise NotImplementedError('Eval for zero-shot not implemented')
        # MINE - my version - why am I stopping residualFCnets doing this?
        # if self.eval_params['num_samples'] == -1 and not (('CombinedModel' in self.train_params['model']) or ('MultiInputModel' in self.train_params['model']) or ('ResidualFCNet' in self.train_params['model'])):
        # MAX - a variant of Maxs - only difference should now be my model types
        #if self.eval_params['num_samples'] == -1 and not (('CombinedModel' in self.train_params['model']) or ('MultiInputModel' in self.train_params['model'])):
        if self.eval_params['num_samples'] == -1 and not (self.train_params['model'] in ['CombinedModel', 'MultiInputModel', 'VariableInputModel', 'ResidualFCNet']):
            loc_emb = model.pos_enc(loc_feat)
        if self.eval_params['num_samples'] == -1 and not (self.train_params['model'] in ['CombinedModel', 'MultiInputModel', 'VariableInputModel']):
            loc_emb = model.forward(loc_feat, return_feats=True)
        for tt_id, tt in tqdm(enumerate(self.taxa)):
            class_of_interest = np.where(array_class_to_taxa == tt)[0]
            if len(class_of_interest) == 0 and not (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
                # taxa of interest is not in the model
                results['per_species_average_precision_all'][tt_id] = np.nan
            else:
                # Only effects my models
                if self.train_params['model'] == 'MultiInputModel':
                    gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                    gt[self.data['taxa_presence'][str(tt)]] = 1.0
                    with torch.no_grad():
                        logits = pred_mtx[:, tt_id]
                        preds = torch.sigmoid(logits)
                        results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds).item()
                    continue
                elif self.train_params['model'] == 'VariableInputModel':
                    gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                    gt[self.data['taxa_presence'][str(tt)]] = 1.0
                    with torch.no_grad():
                        logits = pred_mtx[:, tt_id]
                        preds = torch.sigmoid(logits)
                        results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds).item()
                    continue
                # MINE MINE MINE
                # elif (self.train_params['model'] == 'ResidualFCNet') and (self.eval_params['num_samples'] <= 0):
                #     gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                #     gt[self.data['taxa_presence'][str(tt)]] = 1.0
                #     with torch.no_grad():
                #         logits = pred_mtx[:, tt_id]
                #         preds = torch.sigmoid(logits)
                #         results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds).item()
                #     continue
                if self.eval_params['num_samples'] == -1 and self.train_params['model'] == 'HyperNet':
                    gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                    gt[self.data['taxa_presence'][str(tt)]] = 1.0
                    species_w = model.species_params[self.train_params['class_to_taxa'].index(tt)]
                    preds = loc_emb @ species_w.detach()
                    results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds).item()
                    continue
                elif self.eval_params['num_samples'] == -1 and self.train_params['model'] == 'ResidualFCNet':
                    gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                    gt[self.data['taxa_presence'][str(tt)]] = 1.0
                    preds = model.eval_single_class(x=loc_emb, class_of_interest=self.train_params['class_to_taxa'].index(tt)).detach()
                    results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds).item()
                    continue
                # MINE MINE MINE MINE MINE MINE MINE - seems un needed?
                # elif (self.eval_params['num_samples'] == -1) and ('Hypernet' in self.train_params['model']):
                #     gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                #     gt[self.data['taxa_presence'][str(tt)]] = 1.0
                #     species_w = model.species_params[self.train_params['class_to_taxa'].index(tt)]
                #     preds = loc_emb @ species_w.detach()
                #     results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds).item()
                #     continue
                # extract model predictions for current taxa from prediction matrix
                if 'HyperNet' not in self.train_params['model'] and not (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
                    pred = pred_mtx[:, tt_id]
                elif (self.train_params['zero_shot'] or self.eval_params['num_samples'] > 0):
                    if self.train_params['model'] == 'ResidualFCNet':
                        if self.eval_params['num_samples'] == 0:
                            X = torch.cat([pos_examples[tt], neg_examples], dim=0).to(self.eval_params['device'])
                            w = torch.nn.Parameter(torch.zeros(X.shape[1], 1, device=self.eval_params['device']))
                            nn.init.xavier_uniform_(w)
                            pred = torch.sigmoid(((loc_emb @ w)))[cur_loc_indices].flatten()
                        else:
                            X = torch.cat([pos_examples[tt], neg_examples], dim=0).to(self.eval_params['device'])
                            y = torch.zeros(X.shape[0], dtype=torch.long, device=self.eval_params['device'])
                            y[:pos_examples[tt].shape[0]] = 1
                            # MINE MINE MINE
                            # clf = LogisticRegression(class_weight='balanced', fit_intercept=False, C=0.05, max_iter=200, random_state=0).fit(X.numpy(), y.numpy())
                            # #pred = torch.from_numpy(clf.predict_proba(loc_emb.cpu()))[:,1]
                            # pred = torch.sigmoid(((loc_emb @ (torch.from_numpy(clf.coef_).to(self.eval_params['device']).float().T)) + torch.from_numpy(clf.intercept_).to(self.eval_params['device']).float()).squeeze(-1))
                            # # pred = torch.sigmoid(((loc_emb @ (torch.from_numpy(clf.coef_).cuda().float().T)) + torch.from_numpy(clf.intercept_).cuda().float()).squeeze(-1))
                            # MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX

                            #clf = LogisticRegression(class_weight='balanced', fit_intercept=False, C=0.05, max_iter=200, random_state=0).fit(X.numpy(), y.numpy())

                            C = 0.05
                            w = torch.nn.Parameter(torch.zeros(X.shape[1], 1, device=self.eval_params['device']))
                            opt = torch.optim.Rprop([w], lr=0.001)
                            crit = torch.nn.BCEWithLogitsLoss()
                            crit2 = torch.nn.MSELoss()
                            with torch.set_grad_enabled(True):
                                for i in range(40):
                                    opt.zero_grad()
                                    output = X @ w
                                    yhat = y.float()[:, None]
                                    loss = 0.5 * crit(output[yhat == 0], yhat[yhat == 0]) + 0.5 * crit(output[yhat == 1],
                                                                                                       yhat[
                                                                                                           yhat == 1]) + 1 / (
                                                       C * len(pos_examples[tt])) * crit2(w, 0 * w)
                                    loss.backward()
                                    opt.step()

                            pred = torch.sigmoid(((loc_emb @ w))).flatten()
                            #pred = torch.from_numpy(clf.predict_proba(loc_emb.cpu()))[:,1]
                            #pred = torch.sigmoid(((loc_emb @ (torch.from_numpy(clf.coef_).cuda().float().T)) + torch.from_numpy(clf.intercept_).cuda().float()).squeeze(-1))
                            #locs = torch.from_numpy(utils.coord_grid((1000,2000))).to(self.eval_params['device'])
                            #locs = model(enc.encode(locs), return_feats=True)
                            #img = torch.sigmoid(((locs @ (torch.from_numpy(clf.coef_).cuda().float().T)) + torch.from_numpy(clf.intercept_).cuda().float()).squeeze(-1))
                            #plt.imshow(img.detach().cpu())
                    elif self.train_params['model'] == 'HyperNet':
                        if tt not in emb_ids and tt not in emb_ids2:
                            results['per_species_average_precision_all'][tt_id] = 0.0
                            continue
                        gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                        gt[self.data['taxa_presence'][str(tt)]] = 1.0
                        if self.eval_params['num_samples'] == -1:
                            species_w = model.species_params[self.train_params['class_to_taxa'].index(tt)]
                            preds = loc_emb @ species_w.detach()
                            results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt,preds).item()
                            continue
                        with torch.no_grad():
                            if tt in emb_ids:
                                em = embs
                                emi = emb_ids
                                ky = keys
                            else:
                                results['per_species_average_precision_all'][tt_id] = 0.0
                                continue
                                em = embs2
                                emi = emb_ids2
                                ky = keys2
                            sec_ind = emi.index(tt)
                            sections = [i for i,x in enumerate(ky) if x[0] == sec_ind]
                            order = ['distribution', 'range', 'text']
                            best_section = None
                            order_ind = 0
                            while best_section is None and order_ind < len(order):
                                for section in sections:
                                    if order[order_ind] in ky[section][1].lower():
                                        best_section = section
                                        break
                                order_ind += 1
                            gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                            gt[self.data['taxa_presence'][str(tt)]] = 1.0
                            def get_feat(x):
                                species = model.species_enc(model.species_emb.zero_shot(x))
                                species_w, species_b = species[..., :-1], species[..., -1:]
                                if self.eval_params['num_samples'] == 0:
                                    out = loc_emb @ (species_w.detach()).T
                                    return out

                                X = torch.cat([pos_examples[tt], neg_examples], dim=0).to(self.eval_params['device'])
                                y = torch.zeros(X.shape[0], dtype=torch.long, device=self.eval_params['device'])
                                y[:pos_examples[tt].shape[0]] = 1
                                C = 0.05

                                w = torch.nn.Parameter(torch.zeros_like(species_w, device=self.eval_params['device']))
                                opt = torch.optim.Rprop([w], lr=0.001)
                                crit = torch.nn.BCEWithLogitsLoss()
                                crit2 = torch.nn.MSELoss()
                                with torch.set_grad_enabled(True):
                                    for i in range(40):
                                        opt.zero_grad()
                                        output = (X @ (w + species_w.detach()).T) + 0*species_b.squeeze(-1)
                                        yhat = y.float()[:, None].repeat(1, w.shape[0])
                                        loss = 0.5 * crit(output[yhat == 0], yhat[yhat == 0]) + 0.5 * crit(
                                            output[yhat == 1], yhat[yhat == 1]) + 1 / (
                                                           C * len(pos_examples[tt])) * crit2(w, 0 * w)

                                        loss.backward()
                                        opt.step()
                                        '''out = loc_emb @ (w.data + species_w.detach()).T
                                        gt = torch.zeros(out.shape[0], dtype=torch.float32,
                                                         device=self.eval_params['device'])
                                        gt[self.data['taxa_presence'][str(tt)]] = 1.0
                                        print(utils.average_precision_score_fasterer(gt, out[:, 0]).item())'''

                                out = loc_emb @ (w.data + species_w.detach()).T
                                out = (out + 0*species_b.squeeze(-1))
                                return out
                            # average precision score:
                            yfeats = torch.cat([em[section][None].to(self.eval_params['device']) for section in sections])
                            preds = get_feat(yfeats)
                            if len(sections) > 1:#'habitat', 'overview_summary'
                                kws = [self.eval_params['text_section']] if len(ky) == len(keys) else ['text', 'range','distribution','habitat']
                                best_sections = [i for i,s in enumerate(sections) if any((x in ky[s][1].lower() for x in kws))]
                                #yfeats2 = torch.cat(
                                #    [em[section][None].to(self.eval_params['device']) for section in best_sections]).mean(dim=0, keepdim=True)
                                #pred2 = get_feat(yfeats2)
                                results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds[:, best_sections].mean(dim=1)).item()
                            else:
                                # MINE MINE MINE MINE
                                # sigmoid_preds = torch.sigmoid(preds[:, 0])
                                # results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, sigmoid_preds).item()
                                results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, preds[:, 0]).item()
                            continue
                else:
                    if tt_id % 32 == 0:
                        # MINE MINE MINE MINE
                        # with torch.no_grad():
                        #     preds = torch.empty(loc_feat.shape[0], classes_of_interest[tt_id:tt_id+32].shape[0], device=self.eval_params['device'])
                        #     for i in range(0,preds.shape[0],50000):
                        #         xbatch = loc_feat[i:i+50000]
                        #         ybatch = classes_of_interest[tt_id:tt_id+32].to(self.eval_params['device']).expand(xbatch.shape[0], -1)
                        #         preds[i:i+50000] = model(xbatch, ybatch)
                        preds = torch.empty(loc_feat.shape[0], classes_of_interest[tt_id:tt_id+32].shape[0], device=self.eval_params['device'])
                        for i in range(0,preds.shape[0],50000):
                            xbatch = loc_feat[i:i+50000]
                            ybatch = classes_of_interest[tt_id:tt_id+32].to(self.eval_params['device']).expand(xbatch.shape[0], -1)
                            preds[i:i+50000] = model(xbatch, ybatch)
                    pred = preds[:,tt_id%32]
                gt = torch.zeros(obs_locs.shape[0], dtype=torch.float32, device=self.eval_params['device'])
                gt[self.data['taxa_presence'][str(tt)]] = 1.0
                # average precision score:
                results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_fasterer(gt, pred).item()

        valid_taxa = ~np.isnan(results['per_species_average_precision_all'])

        # store results
        per_species_average_precision_valid = results['per_species_average_precision_all'][valid_taxa]
        results['mean_average_precision'] = per_species_average_precision_valid.mean()
        results['num_eval_species_w_valid_ap'] = valid_taxa.sum()
        results['num_eval_species_total'] = len(self.taxa)
        return results

    def report(self, results):
        for field in ['mean_average_precision', 'num_eval_species_w_valid_ap', 'num_eval_species_total']:
            print(f'{field}: {results[field]}')

    # MINE MINE MINE MINE but shouldn't effect things too much
    def batched_matmul(self, loc_emb, wt):
        batch_size = self.eval_params["batch_size"]
        num_samples = loc_emb.size(0)
        num_batches = (num_samples + batch_size - 1) // batch_size  # Ensures rounding up

        # Preallocate the result array
        pred_mtx = np.empty((num_samples, wt.size(0)), dtype=np.float32)

        wt_T = wt.t()

        # Buffer size for temporary storage
        buffer_size = batch_size * 10  # Adjust buffer size as needed
        buffer = np.empty((buffer_size, wt.size(0)), dtype=np.float32)
        buffer_index = 0
        current_write_index = 0

        for _, i in tqdm(enumerate(range(num_batches))):
            start_idx = i * batch_size
            end_idx = min(start_idx + batch_size, num_samples)

            # Perform matrix multiplication for the current batch in PyTorch
            loc_emb_batch = loc_emb[start_idx:end_idx].to(self.eval_params['device'])
            batch_result = torch.matmul(loc_emb_batch, wt_T).cpu().numpy()

            # Calculate the size of the current batch
            current_batch_size = end_idx - start_idx

            # Check if the buffer can accommodate the current batch
            if buffer_index + current_batch_size > buffer_size:
                # Write buffer contents to pred_mtx
                pred_mtx[current_write_index:current_write_index + buffer_index] = buffer[:buffer_index]
                current_write_index += buffer_index
                buffer_index = 0  # Reset buffer index

            # Add the current batch result to the buffer
            buffer[buffer_index:buffer_index + current_batch_size] = batch_result
            buffer_index += current_batch_size

            # Clean up to free memory
            del loc_emb_batch
            del batch_result
            # torch.cuda.empty_cache()  # Consider removing if unnecessary

        # Write any remaining data in the buffer to pred_mtx
        if buffer_index > 0:
            pred_mtx[current_write_index:current_write_index + buffer_index] = buffer[:buffer_index]

        return pred_mtx


class EvaluatorGeoPrior:

    def __init__(self, train_params, eval_params):
        # store parameters:
        self.train_params = train_params
        self.eval_params = eval_params
        with open('paths.json', 'r') as f:
            paths = json.load(f)
        # load vision model predictions:
        self.data = np.load(os.path.join(paths['geo_prior'], 'geo_prior_model_preds.npz'))
        print(self.data['probs'].shape[0], 'total test observations')
        # load locations:
        meta = pd.read_csv(os.path.join(paths['geo_prior'], 'geo_prior_model_meta.csv'))
        self.obs_locs  = np.vstack((meta['longitude'].values, meta['latitude'].values)).T.astype(np.float32)
        temp = np.array(meta['observed_on'].values, dtype='S10')
        temp = temp.view('S1').reshape((temp.size, -1))
        years = temp[:, :4].view('S4').astype(int)[:, 0]
        months = temp[:, 5:7].view('S2').astype(int)[:, 0]
        days = temp[:, 8:10].view('S2').astype(int)[:, 0]
        days_per_month = np.cumsum([0] + [monthrange(2018, mm)[1] for mm in range(1, 12)])
        dates = days_per_month[months - 1] + days - 1
        self.dates = np.round((dates) / 365.0, 4).astype(np.float32)
        # taxonomic mapping:
        self.taxon_map = self.find_mapping_between_models(self.data['model_to_taxa'], self.train_params['class_to_taxa'])
        self.time_enc = utils.TimeEncoder() if train_params['input_time'] else None
        print(self.taxon_map.shape[0], 'out of', len(self.data['model_to_taxa']), 'taxa in both vision and geo models')

        cs = torch.load('class_counts.pt')
        cs = cs.sum() / cs
        cs = cs.to(self.eval_params['device'])
        self.C = cs[None]
        self.pdf = utils.DataPDFH3(device=self.eval_params['device'])

    def find_mapping_between_models(self, vision_taxa, geo_taxa):
        # this will output an array of size N_overlap X 2
        # the first column will be the indices of the vision model, and the second is their
        # corresponding index in the geo model
        taxon_map = np.ones((vision_taxa.shape[0], 2), dtype=np.int32)*-1
        taxon_map[:, 0] = np.arange(vision_taxa.shape[0])
        geo_taxa_arr = np.array(geo_taxa)
        for tt_id, tt in enumerate(vision_taxa):
            ind = np.where(geo_taxa_arr==tt)[0]
            if len(ind) > 0:
                taxon_map[tt_id, 1] = ind[0]
        inds = np.where(taxon_map[:, 1]>-1)[0]
        taxon_map = taxon_map[inds, :]
        return taxon_map

    def convert_to_inat_vision_order(self, geo_pred_ip, vision_top_k_prob, vision_top_k_inds, vision_taxa, taxon_map, k=1.0):
        # this is slow as we turn the sparse input back into the same size as the dense one
        vision_pred = np.zeros((geo_pred_ip.shape[0], len(vision_taxa)), dtype=np.float32)
        geo_pred = k*np.ones((geo_pred_ip.shape[0], len(vision_taxa)), dtype=np.float32)
        vision_pred[np.arange(vision_pred.shape[0])[..., np.newaxis], vision_top_k_inds] = vision_top_k_prob

        geo_pred[:, taxon_map[:, 0]] = geo_pred_ip[:, taxon_map[:, 1]]

        return geo_pred, vision_pred

    def run_evaluation(self, model, enc, extra_input=None):
        results = {}

        # loop over in batches
        batch_start = np.hstack((np.arange(0, self.data['probs'].shape[0], self.eval_params['batch_size']), self.data['probs'].shape[0]))
        correct_pred = np.zeros(self.data['probs'].shape[0])
        from tqdm import tqdm
        for bb_id, bb in tqdm(enumerate(range(len(batch_start)-1))):
            batch_inds = np.arange(batch_start[bb], batch_start[bb+1])

            vision_probs = self.data['probs'][batch_inds, :]
            vision_inds = self.data['inds'][batch_inds, :]
            gt = self.data['labels'][batch_inds]
            dates = torch.from_numpy(self.dates[batch_inds])

            obs_locs_batch = torch.from_numpy(self.obs_locs[batch_inds, :]).to(self.eval_params['device'])
            noise_level = 1.0
            if self.time_enc is not None:
                extra_input = self.time_enc.encode(torch.cat([dates[...,None], torch.full((*dates.shape, 1),noise_level)], dim=1)).to(
                    self.eval_params['device'])
            loc_feat = torch.cat([enc.encode(obs_locs_batch), extra_input], 1) if extra_input is not None else enc.encode(obs_locs_batch)

            with torch.no_grad():
                geo_pred = model(loc_feat).cpu().numpy()

            geo_pred, vision_pred = self.convert_to_inat_vision_order(geo_pred, vision_probs, vision_inds,
                                                                       self.data['model_to_taxa'], self.taxon_map, k=1.0)
            #geo_pred = softmax(torch.from_numpy(geo_pred), dim=1).numpy()
            comb_pred = np.argmax(vision_pred*geo_pred, 1)
            comb_pred = (comb_pred==gt)
            correct_pred[batch_inds] = comb_pred
        accuracy_by_taxa = np.zeros(len(self.data['model_to_taxa']))
        for tt_id, tt in enumerate(self.data['model_to_taxa']):
            inds = np.where(self.data['labels'] == tt)[0]
            accuracy_by_taxa[tt_id] = float((correct_pred[inds].mean()))
        torch.save(correct_pred, f'correct_{noise_level}.pt')
        torch.save(accuracy_by_taxa, f'abt_{noise_level}.pt')
        results['vision_only_top_1'] = float((self.data['inds'][:, -1] == self.data['labels']).mean())
        results['vision_geo_top_1'] = float(correct_pred.mean())
        return results

    def report(self, results):
        print('Overall accuracy vision only model', round(results['vision_only_top_1'], 3))
        print('Overall accuracy of geo model     ', round(results['vision_geo_top_1'], 3))
        print('Gain                              ', round(results['vision_geo_top_1'] - results['vision_only_top_1'], 3))

class EvaluatorGeoFeature:

    def __init__(self, train_params, eval_params):
        self.train_params = train_params
        self.eval_params = eval_params
        with open('paths.json', 'r') as f:
            paths = json.load(f)
        self.data_path = paths['geo_feature']
        self.country_mask = tifffile.imread(os.path.join(paths['masks'], 'USA_MASK.tif')) == 1
        self.raster_names = ['ABOVE_GROUND_CARBON', 'ELEVATION', 'LEAF_AREA_INDEX', 'NON_TREE_VEGITATED', 'NOT_VEGITATED', 'POPULATION_DENSITY', 'SNOW_COVER', 'SOIL_MOISTURE', 'TREE_COVER']
        self.raster_names_log_transform = ['POPULATION_DENSITY']

    def load_raster(self, raster_name, log_transform=False):
        raster = tifffile.imread(os.path.join(self.data_path, raster_name + '.tif')).astype(np.float32)
        valid_mask = ~np.isnan(raster).copy() & self.country_mask
        # log scaling:
        if log_transform:
            raster[valid_mask] = np.log1p(raster[valid_mask] - raster[valid_mask].min())
        # 0/1 scaling:
        raster[valid_mask] -= raster[valid_mask].min()
        raster[valid_mask] /= raster[valid_mask].max()

        return raster, valid_mask

    def get_split_labels(self, raster, split_ids, split_of_interest):
        # get the GT labels for a subset
        inds_y, inds_x = np.where(split_ids==split_of_interest)
        return raster[inds_y, inds_x]

    def get_split_feats(self, model, enc, split_ids, split_of_interest, extra_input=None):
        locs = utils.coord_grid(self.country_mask.shape, split_ids=split_ids, split_of_interest=split_of_interest)
        locs = torch.from_numpy(locs).to(self.eval_params['device'])
        locs_enc = torch.cat([enc.encode(locs), extra_input.expand(locs.shape[0], -1)], 1) if extra_input is not None else enc.encode(locs)
        with torch.no_grad():
            feats = model(locs_enc, return_feats=True).cpu().numpy()
        return feats

    def run_evaluation(self, model2, enc, extra_input=None):
        if self.train_params['model'] == 'ResidualFCNet':
            model = model2
        elif self.train_params['model'] == 'HyperNet':
            model = lambda x, return_feats=True: model2.pos_enc(x)
        else:
            raise NotImplementedError()
        results = {}
        for raster_name in self.raster_names:
            do_log_transform = raster_name in self.raster_names_log_transform
            raster, valid_mask = self.load_raster(raster_name, do_log_transform)
            split_ids = utils.create_spatial_split(raster, valid_mask, cell_size=self.eval_params['cell_size'])
            feats_train = self.get_split_feats(model, enc, split_ids=split_ids, split_of_interest=1, extra_input=extra_input)
            feats_test = self.get_split_feats(model, enc, split_ids=split_ids, split_of_interest=2, extra_input=extra_input)
            labels_train = self.get_split_labels(raster, split_ids, 1)
            labels_test = self.get_split_labels(raster, split_ids, 2)
            scaler = MinMaxScaler()
            feats_train_scaled = scaler.fit_transform(feats_train)
            feats_test_scaled = scaler.transform(feats_test)
            clf = RidgeCV(alphas=(0.1, 1.0, 10.0), cv=10, fit_intercept=True, scoring='r2').fit(feats_train_scaled, labels_train)
            train_score = clf.score(feats_train_scaled, labels_train)
            test_score = clf.score(feats_test_scaled, labels_test)
            results[f'train_r2_{raster_name}'] = float(train_score)
            results[f'test_r2_{raster_name}'] = float(test_score)
            results[f'alpha_{raster_name}'] = float(clf.alpha_)
        return results

    def report(self, results):
        report_fields = [x for x in results if 'test_r2' in x]
        for field in report_fields:
            print(f'{field}: {results[field]}')
        print(np.mean([results[field] for field in report_fields]))

# I need train overrides for some of my stuff but it should have zero impact on other things
def launch_eval_run(overrides, train_overrides=None):

    eval_params = setup.get_default_params_eval(overrides)

    # set up model:
    eval_params['model_path'] = os.path.join(eval_params['exp_base'], eval_params['experiment_name'], eval_params['ckp_name'])
    #train_params = torch.load(eval_params['model_path'], map_location='cpu', weights_only=False)
    train_params = torch.load(eval_params['model_path'], map_location='cpu')
    default_params = setup.get_default_params_train()
    for key in default_params:
        if key not in train_params['params']:
            train_params['params'][key] = default_params[key]
    # MINE - this is hopefully just for my models - must ensure this - should have zero impact on hypernets
    if train_overrides != None:
        for key, value in train_overrides.items():
            #print(f'updating train param {key}')
            train_params['params'][key] = value

    model = models.get_model(train_params['params'], inference_only=True)
    model.load_state_dict(train_params['state_dict'], strict=False)
    model = model.to(eval_params['device'])
    model.eval()

    # create input encoder:
    if train_params['params']['input_enc'] in ['env', 'sin_cos_env', 'sh_env']:
        raster = datasets.load_env().to(eval_params['device'])
    else:
        raster = None
    enc = utils.CoordEncoder(train_params['params']['input_enc'], raster=raster, input_dim=train_params['params']['input_dim'])
    if train_params['params']['input_time']:
        time_enc = utils.TimeEncoder(input_enc='conical') if train_params['params']['input_time'] else None
        extra_input = torch.cat([time_enc.encode(torch.tensor([[0.0, 1.0]]))], dim=1).to(eval_params['device'])
    else:
        extra_input = None

    # This should only effect my models
    # This is where I create the eval "species tokens" from the specified number of context points
    # TODO just use the existing train params and some if statements to get the right dataset without having to use train overides
    if train_params['params']['model'] == 'MultiInputModel':

        train_dataset = datasets.get_train_data(train_params['params'])

        if 'text' in train_params['params']['dataset']:
            if eval_params['text_section'] != '':
                train_dataset.select_text_section(eval_params['text_section'])
                print(f'Using {eval_params["text_section"]} text for evaluation')

        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=train_params['params']['batch_size'],
            shuffle=True,
            num_workers=8,
            collate_fn=getattr(train_dataset, 'collate_fn', None))

        # if len(train_params['params']['class_to_taxa']) != train_dataset.class_to_taxa:

        # Create new embedding layers for the expanded classes
        num_new_classes = len(train_dataset.class_to_taxa)
        embedding_dim = model.ema_embeddings.embedding_dim
        new_ema_embeddings = nn.Embedding(num_embeddings=num_new_classes, embedding_dim=embedding_dim).to(eval_params["device"])
        new_eval_embeddings = nn.Embedding(num_embeddings=num_new_classes, embedding_dim=embedding_dim).to(eval_params["device"])
        nn.init.xavier_uniform_(new_ema_embeddings.weight)
        nn.init.xavier_uniform_(new_eval_embeddings.weight)

        # Convert lists to numpy arrays for indexing
        class_to_taxa_np = np.array(train_params['params']['class_to_taxa'])
        class_to_taxa_expanded_np = np.array(train_dataset.class_to_taxa)

        # Find common taxa and their indices
        common_taxa, original_indices, expanded_indices = np.intersect1d(
            class_to_taxa_np, class_to_taxa_expanded_np, return_indices=True)

        # Update new embeddings for the common taxa
        new_ema_embeddings.weight.data[expanded_indices] = model.ema_embeddings.weight.data[original_indices]
        new_eval_embeddings.weight.data[expanded_indices] = model.eval_embeddings.weight.data[original_indices]

        # Replace old embeddings with new embeddings
        model.ema_embeddings = new_ema_embeddings
        model.eval_embeddings = new_eval_embeddings

        # Print to verify
        #print("Updating EMA Embeddings: ", model.ema_embeddings.weight.size())
        #print("Updating Eval Embeddings: ", model.eval_embeddings.weight.size())

        train_params['params']['class_to_taxa'] = train_dataset.class_to_taxa

        for _, batch in tqdm(enumerate(train_loader)):
            if train_params['params']['use_text_inputs']:
                loc_feat, _, class_id, context_feats, _, context_mask, embs = batch
                loc_feat = loc_feat.to(eval_params['device'])
                class_id = class_id.to(eval_params['device'])
                context_feats = context_feats.to(eval_params['device'])
                context_mask = context_mask.to(eval_params['device'])
                embs = embs.to(eval_params['device'])
                # Don't need to do anything with these probs - I am just updating the "eval embeddings"
                probs = model.forward(
                    x=loc_feat,
                    context_sequence=context_feats,
                    context_mask=context_mask,
                    class_ids=class_id,
                    return_feats=False,
                    return_class_embeddings=False,
                    class_of_interest=None,
                    use_eval_embeddings=True,
                    text_emb = embs)
            else:
                loc_feat, _, class_id, context_feats, _, context_mask = batch
                loc_feat = loc_feat.to(eval_params['device'])
                class_id = class_id.to(eval_params['device'])
                context_feats = context_feats.to(eval_params['device'])
                context_mask = context_mask.to(eval_params['device'])
                # Don't need to do anything with these probs - I am just updating the "eval embeddings"
                probs = model.forward(
                        x=loc_feat,
                        context_sequence=context_feats,
                        context_mask=context_mask,
                        class_ids=class_id,
                        return_feats=False,
                        return_class_embeddings=False,
                        class_of_interest=None,
                        use_eval_embeddings=True
                    )
        print('eval embeddings generated!')

    elif train_params['params']['model'] == 'VariableInputModel':

        train_dataset = datasets.get_train_data(train_params['params'])

        if train_dataset.use_text:
            if eval_params['text_section'] != '':
                train_dataset.select_text_section(eval_params['text_section'])
                print(f'Using {eval_params["text_section"]} text for evaluation')

        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=train_params['params']['batch_size'],
            shuffle=True,
            num_workers=8,
            collate_fn=getattr(train_dataset, 'collate_fn', None))

        # if len(train_params['params']['class_to_taxa']) != train_dataset.class_to_taxa:

        # Create new embedding layers for the expanded classes
        num_new_classes = len(train_dataset.class_to_taxa)
        embedding_dim = model.ema_embeddings.embedding_dim
        new_ema_embeddings = nn.Embedding(num_embeddings=num_new_classes, embedding_dim=embedding_dim).to(eval_params["device"])
        new_eval_embeddings = nn.Embedding(num_embeddings=num_new_classes, embedding_dim=embedding_dim).to(eval_params["device"])
        nn.init.xavier_uniform_(new_ema_embeddings.weight)
        nn.init.xavier_uniform_(new_eval_embeddings.weight)

        # Convert lists to numpy arrays for indexing
        class_to_taxa_np = np.array(train_params['params']['class_to_taxa'])
        class_to_taxa_expanded_np = np.array(train_dataset.class_to_taxa)

        # Find common taxa and their indices
        common_taxa, original_indices, expanded_indices = np.intersect1d(
            class_to_taxa_np, class_to_taxa_expanded_np, return_indices=True)

        # Update new embeddings for the common taxa
        new_ema_embeddings.weight.data[expanded_indices] = model.ema_embeddings.weight.data[original_indices]
        new_eval_embeddings.weight.data[expanded_indices] = model.eval_embeddings.weight.data[original_indices]

        # Replace old embeddings with new embeddings
        model.ema_embeddings = new_ema_embeddings
        model.eval_embeddings = new_eval_embeddings

        # Print to verify
        #print("Updating EMA Embeddings: ", model.ema_embeddings.weight.size())
        #print("Updating Eval Embeddings: ", model.eval_embeddings.weight.size())

        train_params['params']['class_to_taxa'] = train_dataset.class_to_taxa

        for _, batch in tqdm(enumerate(train_loader)):
            loc_feat, _, class_id, context_feats, _, context_mask, text_emb, image_emb, env_emb = batch
            # print('DO I NEED THE BELOW LINES? DO THEY SLOW THINGS DOWN')
            # return padded_sequences, padded_locs, class_ids, sequence_mask
            loc_feat = loc_feat.to(eval_params['device'])
            class_id = class_id.to(eval_params['device'])
            context_feats = context_feats.to(eval_params['device'])
            context_mask = context_mask.to(eval_params['device'])
            text_emb = text_emb.to(eval_params['device'])
            image_emb = image_emb.to(eval_params['device'])
            if env_emb is not None:
                env_emb = env_emb.to(eval_params['device'])
            # Don't need to do anything with these probs - I am just updating the "eval embeddings"

            probs = model.forward(x=loc_feat,
                                  context_sequence=context_feats,
                                  context_mask=context_mask,
                                  class_ids=class_id,
                                  text_emb=text_emb,
                                  image_emb=image_emb,
                                  env_emb=env_emb,
                                  return_feats=False,
                                  return_class_embeddings=False,
                                  class_of_interest=None,
                                  use_eval_embeddings=True)

        print('eval embeddings generated!')

    print('\n' + eval_params['eval_type'])
    t = time.time()
    if eval_params['eval_type'] == 'snt':
        eval_params['split'] = 'test' # val, test, all
        eval_params['val_frac'] = 0.50
        eval_params['split_seed'] = 7499
        evaluator = EvaluatorSNT(train_params['params'], eval_params)
        results = evaluator.run_evaluation(model, enc, extra_input=extra_input)
        evaluator.report(results)
    elif eval_params['eval_type'] == 'iucn':
        evaluator = EvaluatorIUCN(train_params['params'], eval_params)
        results = evaluator.run_evaluation(model, enc, extra_input=extra_input)
        evaluator.report(results)
    elif eval_params['eval_type'] == 'geo_prior':
        evaluator = EvaluatorGeoPrior(train_params['params'], eval_params)
        results = evaluator.run_evaluation(model, enc, extra_input=extra_input)
        evaluator.report(results)
    elif eval_params['eval_type'] == 'geo_feature':
        evaluator = EvaluatorGeoFeature(train_params['params'], eval_params)
        results = evaluator.run_evaluation(model, enc, extra_input=extra_input)
        evaluator.report(results)
    else:
        raise NotImplementedError('Eval type not implemented.')
    print(f'evaluation completed in {np.around((time.time()-t)/60, 1)} min')
    return results

class EvaluatorGeoPriorLowRank:

    def __init__(self, train_params, eval_params):
        # store parameters:
        self.train_params = train_params
        self.eval_params = eval_params
        with open('paths.json', 'r') as f:
            paths = json.load(f)
        # load vision model predictions:
        self.data = np.load(os.path.join(paths['geo_prior'], 'geo_prior_model_preds.npz'))
        print(self.data['probs'].shape[0], 'total test observations')
        # load locations:
        meta = pd.read_csv(os.path.join(paths['geo_prior'], 'geo_prior_model_meta.csv'))
        self.obs_locs  = np.vstack((meta['longitude'].values, meta['latitude'].values)).T.astype(np.float32)
        temp = np.array(meta['observed_on'].values, dtype='S10')
        temp = temp.view('S1').reshape((temp.size, -1))
        years = temp[:, :4].view('S4').astype(int)[:, 0]
        months = temp[:, 5:7].view('S2').astype(int)[:, 0]
        days = temp[:, 8:10].view('S2').astype(int)[:, 0]
        days_per_month = np.cumsum([0] + [monthrange(2018, mm)[1] for mm in range(1, 12)])
        dates = days_per_month[months - 1] + days - 1
        self.dates = np.round((dates) / 365.0, 4).astype(np.float32)
        # taxonomic mapping:
        self.taxon_map = self.find_mapping_between_models(self.data['model_to_taxa'], self.train_params['class_to_taxa'])
        print(self.taxon_map.shape[0], 'out of', len(self.data['model_to_taxa']), 'taxa in both vision and geo models')

    def find_mapping_between_models(self, vision_taxa, geo_taxa):
        # this will output an array of size N_overlap X 2
        # the first column will be the indices of the vision model, and the second is their
        # corresponding index in the geo model
        taxon_map = np.ones((vision_taxa.shape[0], 2), dtype=np.int32)*-1
        taxon_map[:, 0] = np.arange(vision_taxa.shape[0])
        geo_taxa_arr = np.array(geo_taxa)
        for tt_id, tt in enumerate(vision_taxa):
            ind = np.where(geo_taxa_arr==tt)[0]
            if len(ind) > 0:
                taxon_map[tt_id, 1] = ind[0]
        inds = np.where(taxon_map[:, 1]>-1)[0]
        taxon_map = taxon_map[inds, :]
        return taxon_map

    def convert_to_inat_vision_order(self, geo_pred_ip, vision_top_k_prob, vision_top_k_inds, vision_taxa, taxon_map):
        # this is slow as we turn the sparse input back into the same size as the dense one
        vision_pred = np.zeros((geo_pred_ip.shape[0], len(vision_taxa)), dtype=np.float32)
        geo_pred = np.ones((geo_pred_ip.shape[0], len(vision_taxa)), dtype=np.float32)
        vision_pred[np.arange(vision_pred.shape[0])[..., np.newaxis], vision_top_k_inds] = vision_top_k_prob

        geo_pred[:, taxon_map[:, 0]] = geo_pred_ip[:, taxon_map[:, 1]]

        return geo_pred, vision_pred

    def run_evaluation(self, model):
        results = {}

        # loop over in batches
        batch_start = np.hstack((np.arange(0, self.data['probs'].shape[0], self.eval_params['batch_size']), self.data['probs'].shape[0]))
        correct_pred = np.zeros(self.data['probs'].shape[0])
        from tqdm import tqdm
        for bb_id, bb in tqdm(enumerate(range(len(batch_start)-1))):
            batch_inds = np.arange(batch_start[bb], batch_start[bb+1])

            vision_probs = self.data['probs'][batch_inds, :]
            vision_inds = self.data['inds'][batch_inds, :]
            gt = self.data['labels'][batch_inds]
            dates = torch.from_numpy(self.dates[batch_inds])

            obs_locs_batch = torch.from_numpy(self.obs_locs[batch_inds, :]).to(self.eval_params['device'])

            with torch.no_grad():
                geo_pdf = torch.log(model.sample(obs_locs_batch)).T

            for bias in range(11+5, 12+5):
                geo_pred, vision_pred = self.convert_to_inat_vision_order(geo_pdf+bias, vision_probs, vision_inds,
                                                                     self.data['model_to_taxa'], self.taxon_map)
                geo_pred = softmax(torch.from_numpy(geo_pred), dim=1).numpy()
                #print(bias, (np.argmax(vision_pred*geo_pred2, 1) == gt).mean().item())

            comb_pred = np.argmax(vision_pred*geo_pred, 1)
            comb_pred = (comb_pred==gt)
            correct_pred[batch_inds] = comb_pred
        accuracy_by_taxa = np.zeros(len(self.data['model_to_taxa']))
        for tt_id, tt in enumerate(self.data['model_to_taxa']):
            inds = np.where(self.data['labels'] == tt)[0]
            accuracy_by_taxa[tt_id] = float((correct_pred[inds].mean()))
        results['vision_only_top_1'] = float((self.data['inds'][:, -1] == self.data['labels']).mean())
        results['vision_geo_top_1'] = float(correct_pred.mean())
        return results

    def report(self, results):
        print('Overall accuracy vision only model', round(results['vision_only_top_1'], 3))
        print('Overall accuracy of geo model     ', round(results['vision_geo_top_1'], 3))
        print('Gain                              ', round(results['vision_geo_top_1'] - results['vision_only_top_1'], 3))

# MINE MINE MINE - these are just to help with low shot plotting. Can probably be elsewhere.
def generate_eval_embeddings(overrides, taxa_of_interest, num_context, train_overrides=None):

    eval_params = setup.get_default_params_eval(overrides)
    
    # set up model:
    eval_params['model_path'] = os.path.join(eval_params['exp_base'], eval_params['experiment_name'], eval_params['ckp_name'])
    eval_params['device'] = 'cpu'
    train_params = torch.load(eval_params['model_path'], map_location='cpu')
    train_params['params']['device'] = 'cpu'
    default_params = setup.get_default_params_train()
    for key in default_params:
        if key not in train_params['params']:
            train_params['params'][key] = default_params[key]

    # create input encoder:
    if train_params['params']['input_enc'] in ['env', 'sin_cos_env']:
        raster = datasets.load_env().to(eval_params['device'])
    else:
        raster = None
    enc = utils.CoordEncoder(train_params['params']['input_enc'], raster=raster, input_dim=train_params['params']['input_dim'])
    if train_params['params']['input_time']:
        time_enc = utils.TimeEncoder(input_enc='conical') if train_params['params']['input_time'] else None
        extra_input = torch.cat([time_enc.encode(torch.tensor([[0.0, 1.0]]))], dim=1).to(eval_params['device'])
    else:
        extra_input = None

    if train_overrides != None:
        for key, value in train_overrides.items():
            #print(f'updating train param {key}')
            train_params['params'][key] = value

    train_dataset = datasets.get_train_data(train_params['params'])

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=train_params['params']['batch_size'],
        shuffle=True,
        num_workers=8,
        collate_fn=getattr(train_dataset, 'collate_fn', None))
    model = models.get_model(train_params['params'], inference_only=True)
    # model.load_state_dict(train_params['state_dict'], strict=True)
    model.load_state_dict(train_params['state_dict'], strict=False)
    model = model.to(eval_params['device'])
    model.eval()

    # Create new embedding layers for the expanded classes
    num_new_classes = len(train_dataset.class_to_taxa)
    embedding_dim = model.ema_embeddings.embedding_dim
    new_ema_embeddings = nn.Embedding(num_embeddings=num_new_classes, embedding_dim=embedding_dim).to(eval_params["device"])
    new_eval_embeddings = nn.Embedding(num_embeddings=num_new_classes, embedding_dim=embedding_dim).to(eval_params["device"])
    nn.init.xavier_uniform_(new_ema_embeddings.weight)
    nn.init.xavier_uniform_(new_eval_embeddings.weight)

    # Convert lists to numpy arrays for indexing
    class_to_taxa_np = np.array(train_params['params']['class_to_taxa'])
    class_to_taxa_expanded_np = np.array(train_dataset.class_to_taxa)

    # Find common taxa and their indices
    common_taxa, original_indices, expanded_indices = np.intersect1d(
        class_to_taxa_np, class_to_taxa_expanded_np, return_indices=True)

    # Update new embeddings for the common taxa
    new_ema_embeddings.weight.data[expanded_indices] = model.ema_embeddings.weight.data[original_indices]
    new_eval_embeddings.weight.data[expanded_indices] = model.eval_embeddings.weight.data[original_indices]

    # Replace old embeddings with new embeddings
    model.ema_embeddings = new_ema_embeddings
    model.eval_embeddings = new_eval_embeddings

    # Print to verify
    #print("Updated EMA Embeddings: ", model.ema_embeddings.weight.size())
    #print("Updated Eval Embeddings: ", model.eval_embeddings.weight.size())

    train_params['params']['class_to_taxa'] = train_dataset.class_to_taxa

    class_of_interest = train_dataset.class_to_taxa.index(taxa_of_interest)

    # Find the index of class_of_interest in the labels tensor
    loc_index_of_interest = (train_dataset.labels == class_of_interest).nonzero(as_tuple=True)[0].item()

    # loc_index_of_interest = train_dataset.labels.index(class_of_interest)

    loc_of_interest = train_dataset.loc_feats[loc_index_of_interest]

    all_class_context_feats = train_dataset.per_class_loc_feats[class_of_interest]
    all_class_context_locs = train_dataset.per_class_locs[class_of_interest]

    context_feats_of_interest = all_class_context_feats[:num_context,:]
    context_locs_of_interest = all_class_context_locs[:num_context,:]

    # context_mask = context_feats_of_interest != -10
    # context_mask = None
    # context_mask = (context_locs_of_interest == -10).all(dim=-1).to(eval_params['device'])
    context_mask = (context_locs_of_interest == -10).all(dim=-1).to(eval_params['device']).unsqueeze(0)

    probs = model.forward(
        x=loc_of_interest.to(train_params['params']['device']),
        context_sequence=context_feats_of_interest.to(train_params['params']['device']),
        context_mask=context_mask,
        class_ids=class_of_interest,
        return_feats=False,
        return_class_embeddings=False,
        class_of_interest=None,
        use_eval_embeddings=True
    )

    #print(f'eval embedding generated for class {class_of_interest}, taxa {taxa_of_interest}')

    return model, context_locs_of_interest, train_params, class_of_interest

def generate_eval_embedding_from_given_points(context_points, overrides, taxa_of_interest, train_overrides=None, text_emb=None):

    eval_params = setup.get_default_params_eval(overrides)

    # set up model:
    eval_params['model_path'] = os.path.join(eval_params['exp_base'], eval_params['experiment_name'], eval_params['ckp_name'])
    train_params = torch.load(eval_params['model_path'], map_location='cpu')
    default_params = setup.get_default_params_train()
    for key in default_params:
        if key not in train_params['params']:
            train_params['params'][key] = default_params[key]

    # create input encoder:
    if train_params['params']['input_enc'] in ['env', 'sin_cos_env']:
        raster = datasets.load_env().to(eval_params['device'])
    else:
        raster = None
    enc = utils.CoordEncoder(train_params['params']['input_enc'], raster=raster, input_dim=train_params['params']['input_dim'])
    if train_params['params']['input_time']:
        time_enc = utils.TimeEncoder(input_enc='conical') if train_params['params']['input_time'] else None
        extra_input = torch.cat([time_enc.encode(torch.tensor([[0.0, 1.0]]))], dim=1).to(eval_params['device'])
    else:
        extra_input = None

    if train_overrides != None:
        for key, value in train_overrides.items():
            #print(f'updating train param {key}')
            train_params['params'][key] = value

    # create context point encoder
    transformer_input_enc = train_params['params']['transformer_input_enc']
    if transformer_input_enc in ['env', 'sin_cos_env']:
        transformer_raster = datasets.load_env().to(eval_params['device'])
    else:
        transformer_raster = None
    token_dim = train_params['params']['species_dim']

    if transformer_input_enc == 'sinr':
        transformer_enc = enc
    else:
        transformer_enc = utils.CoordEncoder(transformer_input_enc, transformer_raster, input_dim=token_dim)

    # transformer_enc = utils.CoordEncoder(transformer_input_enc, transformer_raster, input_dim=token_dim)

    # load model
    model = models.get_model(train_params['params'], inference_only=True)
    # model.load_state_dict(train_params['state_dict'], strict=True)
    model.load_state_dict(train_params['state_dict'], strict=False)
    model = model.to(eval_params['device'])
    model.eval()

    # # Create new embedding layers for the expanded classes
    # num_new_classes = len(train_params['params']['class_to_taxa'])
    embedding_dim = model.ema_embeddings.embedding_dim
    # new_ema_embeddings = nn.Embedding(num_embeddings=num_new_classes, embedding_dim=embedding_dim).to(eval_params["device"])
    new_eval_embeddings = nn.Embedding(num_embeddings=model.eval_embeddings.weight.size()[0], embedding_dim=embedding_dim).to(eval_params["device"])

    # Update new embeddings for the common taxa
    new_eval_embeddings.weight.data = model.eval_embeddings.weight.data

    # Replace old embeddings with new embeddings
    model.eval_embeddings = new_eval_embeddings

    # Print to verify
    #print("Updated EMA Embeddings: ", model.ema_embeddings.weight.size())
    #print("Updated Eval Embeddings: ", model.eval_embeddings.weight.size())

    class_of_interest = 0

    just_loc = torch.from_numpy(np.array([[0.0,0.0]]).astype(np.float32))

    loc_of_interest = enc.encode(just_loc, normalize=False)

    context_points = torch.from_numpy(np.array(context_points).astype(np.float32))

    all_class_context_feats = transformer_enc.encode(context_points, normalize=False)
    all_class_context_locs = context_points

    context_feats_of_interest = all_class_context_feats
    context_locs_of_interest = all_class_context_locs

    # context_mask = context_feats_of_interest[:,0] != -10
    # context_mask = None
    context_mask = torch.from_numpy(np.full((1, context_feats_of_interest.shape[0]), False))

    # probs = model.forward(
    #     x=loc_of_interest.to(train_params['params']['device']),
    #     context_sequence=context_feats_of_interest.to(train_params['params']['device']),
    #     context_mask=context_mask,
    #     class_ids=class_of_interest,
    #     return_feats=False,
    #     return_class_embeddings=False,
    #     class_of_interest=None,
    #     use_eval_embeddings=True
    # )

    probs = model.forward(
        x=loc_of_interest.to(eval_params['device']),
        context_sequence=context_feats_of_interest.to(eval_params['device']),
        context_mask=context_mask,
        class_ids=class_of_interest,
        return_feats=False,
        return_class_embeddings=False,
        class_of_interest=None,
        use_eval_embeddings=True,
        text_emb=text_emb
    )

    #print(f'eval embedding generated for class {class_of_interest}, from hand selected context points')

    return model, context_locs_of_interest, train_params, class_of_interest