File size: 1,723 Bytes
fe08291
f04c9cc
cdd9a51
 
f04c9cc
585cc65
e133530
f04c9cc
 
cdd9a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585cc65
cdd9a51
 
 
 
 
 
 
 
585cc65
 
 
cdd9a51
f04c9cc
 
 
cdd9a51
 
 
585cc65
ee3757e
 
 
 
585cc65
 
 
 
 
 
 
e133530
585cc65
 
 
f04c9cc
 
 
 
fe08291
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import streamlit as st
from PIL import Image
from inference import inference
import torch
import io
from diffusion import DiffusionImageAPI
import math

def main():

    genres_dict = {
    'Action': 1,
    'Adventure': 2,
    'Animation': 3,
    'Comedy': 4,
    'Drama': 5,
    'Family': 6,
    'Horror': 7,
    'Music': 8,
    'Romance': 9,
    'Science Fiction': 10,
    'Western': 11,
    'Fantasy': 12,
    'Thriller': 13
}

    st.title("Movie Diffusion")
    cond = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    
    # Add a sidebar for genre selection
    #genre = st.sidebar.selectbox("Select Genre", list(genres_dict.keys()))


    selected_genres = st.sidebar.multiselect('Select Genres', list(genres_dict.keys()))

    progress_placeholder = st.empty()
    image_placeholder = st.empty()

    

    # Button to trigger image generation
    if st.button('Generate Image'):
        for genre in selected_genres:
            code = genres_dict[genre]
            cond[code-1] = code

        if torch.any(cond != 0):
            random_number = torch.randint(0, 13, (1,)).item()
            cond[random_number] = random_number + 1

        def callback(image, progress):
            image = DiffusionImageAPI(None).tensor_to_image(image.squeeze(0))
            img_buffer = io.BytesIO()
            image.save(img_buffer, format="PNG")
            img_buffer.seek(0)

            # Update the content of the placeholders
            progress_placeholder.write(f"Generating Image...\nProgress: {min(progress * 110, 100):.2f}%")
            image_placeholder.image(img_buffer, caption='Generated Image', width=300)

        inference(cond, callback=callback)

if __name__ == "__main__":
    main()