File size: 13,601 Bytes
f04c9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
098fc8a
 
 
f04c9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
098fc8a
f04c9cc
06ebfb2
 
 
 
475978d
 
 
9efd988
f04c9cc
 
 
 
 
 
 
 
 
098fc8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from typing import Any
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from collections import defaultdict
import torch as th
import numpy as np
import math

str_to_act = defaultdict(lambda: nn.SiLU())
str_to_act.update({
    "relu": nn.ReLU(),
    "silu": nn.SiLU(),
    "gelu": nn.GELU(),
})

class SinusoidalPositionalEncoding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        device = t.device
        t = t.unsqueeze(-1)
        inv_freq = 1.0 / (10000 ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim))
        sin_enc = torch.sin(t.repeat(1, self.dim // 2) * inv_freq)
        cos_enc = torch.cos(t.repeat(1, self.dim // 2) * inv_freq)
        pos_enc = torch.cat([sin_enc, cos_enc], dim=-1)
        return pos_enc

class TimeEmbedding(nn.Module):
    def __init__(self, model_dim: int, emb_dim: int, act="silu"):
        super().__init__()

        self.lin = nn.Linear(model_dim, emb_dim)
        self.act = str_to_act[act]
        self.lin2 = nn.Linear(emb_dim, emb_dim)
    
    def forward(self, x):
        x = self.lin(x)
        x = self.act(x)
        x = self.lin2(x)
        return x

class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, act="silu", dropout=None, zero=False):
        super().__init__()

        self.norm = nn.GroupNorm(
            num_groups=32,
            num_channels=in_channels,
        )

        self.act = str_to_act[act]

        if dropout is not None:
            self.dropout = nn.Dropout(dropout)

        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            padding=1,
        )
        if zero:
            self.conv.weight.data.zero_()

        
    def forward(self, x):
        x = self.norm(x)
        x = self.act(x)
        if hasattr(self, "dropout"):
            x = self.dropout(x)
        x = self.conv(x)
        return x

class EmbeddingBlock(nn.Module):
    def __init__(self, channels: int, emb_dim: int, act="silu"):
        super().__init__()

        self.act = str_to_act[act]
        self.lin = nn.Linear(emb_dim, channels)
    
    def forward(self, x):
        x = self.act(x)
        x = self.lin(x)
        return x

class ResBlock(nn.Module):
    def __init__(self, channels: int, emb_dim: int, dropout: float = 0, out_channels=None):
        """A resblock with a time embedding and an optional change in channel count
        """
        if out_channels is None:
            out_channels = channels
        super().__init__()

        self.conv1 = ConvBlock(channels, out_channels)
        
        self.emb = EmbeddingBlock(out_channels, emb_dim) 

        self.conv2 = ConvBlock(out_channels, out_channels, dropout=dropout, zero=True)

        if channels != out_channels:
            self.skip_connection = nn.Conv2d(channels, out_channels, kernel_size=1)
        else:
            self.skip_connection = nn.Identity()

    
    def forward(self, x, t):
        original = x
        x = self.conv1(x)

        t = self.emb(t)
        # t: (batch_size, time_embedding_dim) = (batch_size, out_channels)
        # x: (batch_size, out_channels, height, width)
        # we repeat the time embedding to match the shape of x
        t = t.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, x.shape[2], x.shape[3])

        x = x + t

        x = self.conv2(x)
        x = x + self.skip_connection(original)
        return x

class SelfAttentionBlock(nn.Module):
    def __init__(self, channels, num_heads=1):
        super().__init__()
        self.channels = channels
        self.num_heads = num_heads
        
        self.norm = nn.GroupNorm(32, channels)

        self.attention = nn.MultiheadAttention(
            embed_dim=channels,
            num_heads=num_heads,
            dropout=0,
            batch_first=True,
            bias=True,
        )
    
    def forward(self, x):
        h, w = x.shape[-2:]
        original = x
        x = self.norm(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        x = self.attention(x, x, x)[0]
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        return x + original

class Downsample(nn.Module):
    def __init__(self, channels):
        super().__init__()
        # ddpm uses maxpool
        # self.down = nn.MaxPool2d

        # iddpm uses strided conv
        self.down = nn.Conv2d(
            in_channels=channels,
            out_channels=channels,
            kernel_size=3,
            stride=2,
            padding=1,
        )
    
    def forward(self, x):
        return self.down(x)

class DownBlock(nn.Module):
    """According to U-Net paper

    'The contracting path follows the typical architecture of a convolutional network.
    It consists of the repeated application of two 3x3 convolutions (unpadded convolutions),
    each followed by a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
    for downsampling. At each downsampling step we double the number of feature channels.'
    """

    def __init__(self, in_channels, out_channels, time_embedding_dim, use_attn=False, dropout=0, downsample=True, width=1):
        """in_channels will typically be half of out_channels"""
        super().__init__()
        self.width = width
        self.use_attn = use_attn
        self.do_downsample = downsample

        self.blocks = nn.ModuleList()
        for _ in range(width):
            self.blocks.append(ResBlock(
                channels=in_channels,
                out_channels=out_channels,
                emb_dim=time_embedding_dim,
                dropout=dropout,
            ))
            if self.use_attn:
                self.blocks.append(SelfAttentionBlock(
                    channels=out_channels,
                ))
            in_channels = out_channels

        if self.do_downsample:
            self.downsample = Downsample(out_channels) 

    def forward(self, x, t):
        for block in self.blocks:
            if isinstance(block, ResBlock):
                x = block(x, t)
            elif isinstance(block, SelfAttentionBlock):
                x = block(x)

        residual = x
        if self.do_downsample:
            x = self.downsample(x)
        return x, residual

class Upsample(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.upsample = nn.Upsample(scale_factor=2)
        self.conv = nn.Conv2d(
            in_channels=channels,
            out_channels=channels,
            kernel_size=3,
            padding=1,
        )
    
    def forward(self, x):
        x = self.upsample(x)
        x = self.conv(x)
        return x

class UpBlock(nn.Module):
    """According to U-Net paper

    Every step in the expansive path consists of an upsampling of the feature map followed by a 2x2
    convolution (“up-convolution”) that halves the number of feature channels, a concatenation with
    the correspondingly cropped feature map from the contracting path, and two 3x3 convolutions,
    each followed by a ReLU.
    """

    def __init__(self, in_channels, out_channels, time_embedding_dim, use_attn=False, dropout=0, upsample=True, width=1):
        """in_channels will typically be double of out_channels
        """
        super().__init__()
        self.use_attn = use_attn
        self.do_upsample = upsample

        self.blocks = nn.ModuleList()
        for _ in range(width):
            self.blocks.append(ResBlock(
                channels=in_channels,
                out_channels=out_channels,
                emb_dim=time_embedding_dim,
                dropout=dropout,
            ))
            if self.use_attn:
                self.blocks.append(SelfAttentionBlock(
                    channels=out_channels,
                ))
            in_channels = out_channels

        if self.do_upsample:
            self.upsample = Upsample(out_channels)

    def forward(self, x, t):
        for block in self.blocks:
            if isinstance(block, ResBlock):
                x = block(x, t)
            elif isinstance(block, SelfAttentionBlock):
                x = block(x)

        if self.do_upsample:
            x = self.upsample(x)
        return x

class Bottleneck(nn.Module):
    def __init__(self, channels, dropout, time_embedding_dim):
        super().__init__()
        in_channels = channels
        out_channels = channels
        self.resblock_1 = ResBlock(
            channels=in_channels,
            out_channels=out_channels,
            dropout=dropout,
            emb_dim=time_embedding_dim
        )
        self.attention_block = SelfAttentionBlock(
            channels=out_channels,
        )
        self.resblock_2 = ResBlock(
            channels=out_channels,
            out_channels=out_channels,
            dropout=dropout,
            emb_dim=time_embedding_dim
        ) 
    
    def forward(self, x, t):
        x = self.resblock_1(x, t)
        x = self.attention_block(x)
        x = self.resblock_2(x, t)
        return x

class Unet(nn.Module):
    def __init__(
        self,
        image_channels=3,
        res_block_width=2,
        starting_channels=128,
        dropout=0,
        channel_mults=(1, 2, 2, 4, 4),
        attention_layers=(False, False, False, True, False)
    ):
        super().__init__()
        self.is_conditional = False
        #channel_mults = (1, 2, 2, 2)
        #attention_layers = (False, False, True, False)
        #res_block_width=3

        self.image_channels = image_channels
        self.starting_channels = starting_channels
        time_embedding_dim = 4 * starting_channels

        self.time_encoding = SinusoidalPositionalEncoding(dim=starting_channels)
        self.time_embedding = TimeEmbedding(model_dim=starting_channels, emb_dim=time_embedding_dim)

        self.input = nn.Conv2d(3, starting_channels, kernel_size=3, padding=1)

        current_channel_count = starting_channels

        input_channel_counts = []
        self.contracting_path = nn.ModuleList([])
        for i, channel_multiplier in enumerate(channel_mults):
            is_last_layer = i == len(channel_mults) - 1
            next_channel_count = channel_multiplier * starting_channels

            self.contracting_path.append(DownBlock(
                in_channels=current_channel_count,
                out_channels=next_channel_count,
                time_embedding_dim=time_embedding_dim,
                use_attn=attention_layers[i],
                dropout=dropout,
                downsample=not is_last_layer,
                width=res_block_width,
            ))
            current_channel_count = next_channel_count 

            input_channel_counts.append(current_channel_count)

        self.bottleneck = Bottleneck(channels=current_channel_count, time_embedding_dim=time_embedding_dim, dropout=dropout) 

        self.expansive_path = nn.ModuleList([])
        for i, channel_multiplier in enumerate(reversed(channel_mults)):
            next_channel_count = channel_multiplier * starting_channels

            self.expansive_path.append(UpBlock(
                in_channels=current_channel_count + input_channel_counts.pop(),
                out_channels=next_channel_count,
                time_embedding_dim=time_embedding_dim,
                use_attn=list(reversed(attention_layers))[i],
                dropout=dropout,
                upsample=i != len(channel_mults) - 1,
                width=res_block_width,
            ))
            current_channel_count = next_channel_count

        last_conv = nn.Conv2d(
            in_channels=starting_channels,
            out_channels=image_channels,
            kernel_size=3,
            padding=1,
        )
        last_conv.weight.data.zero_()

        self.head = nn.Sequential(
            nn.GroupNorm(32, starting_channels),
            nn.SiLU(),
            last_conv,
        )

    def forward(self, x, t):
        t = self.time_encoding(t)
        return self._forward(x, t)

    def _forward(self, x, t):
        t = self.time_embedding(t)

        x = self.input(x)

        residuals = []
        for contracting_block in self.contracting_path:
            x, residual = contracting_block(x, t)
            residuals.append(residual)

        x = self.bottleneck(x, t)

        for expansive_block in self.expansive_path:
            # Add the residual
            residual = residuals.pop()
            x = torch.cat([x, residual], dim=1)

            x = expansive_block(x, t)

        x = self.head(x)
        return x

class ConditionalUnet(nn.Module):
    def __init__(self, unet, num_classes):
        super().__init__()
        self.is_conditional = True

        self.unet = unet
        self.num_classes = num_classes

        self.class_embedding = nn.Embedding(num_classes + 1, unet.starting_channels, padding_idx=0)
    
    def to(self, device):
        self.device = device
        return super().to(device)
    
    def forward(self, x, t, cond=None):
        cond = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
        cond = cond.unsqueeze(0)
        cond = cond.to(self.device)
        # cond: (batch_size, n), where n is the number of classes that we are conditioning on
        t = self.unet.time_encoding(t)

        if cond is not None:
            cond = self.class_embedding(cond)
            # sum across the classes so we get a single vector representing the set of classes
            cond = cond.sum(dim=1)
            t += cond

        return self.unet._forward(x, t)