File size: 5,878 Bytes
aba0616 c87255c 48032f9 c87255c 48032f9 c87255c 48032f9 aba0616 48032f9 c87255c 48032f9 c87255c 48032f9 c87255c 48032f9 c87255c 48032f9 c87255c 48032f9 c87255c 48032f9 c87255c 48032f9 c87255c 48032f9 c87255c 48032f9 c87255c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import numpy as np
import pandas as pd
import pickle
import sklearn
import plotly.express as px
from sentence_transformers import SentenceTransformer
from sklearn.cluster import MiniBatchKMeans
from learn_multi_doc_model import Model
#css_code='body {background-image:url("https://picsum.photos/seed/picsum/200/300");} div.gradio-container {background: white;}, button#component-8{background-color: rgb(158,202,225);}'
css_code='button#component-8{background-color: rgb(158,202,225);}'
import __main__
setattr(__main__, "Model", Model)
categories = ["Censorship","Development","Digital Activism","Disaster","Economics & Business","Education","Environment","Governance","Health","History","Humanitarian Response","International Relations","Law","Media & Journalism","Migration & Immigration","Politics","Protest","Religion","Sport","Travel","War & Conflict","Technology + Science","Women & Gender + LGBTQ + Youth","Freedom of Speech + Human Rights","Literature + Arts & Culture"]
input_cvect_key_file = 'topic_discovery/cvects.key'
model_labse = SentenceTransformer('sentence-transformers/LaBSE')
with open('models/MLP_classifier_average_en.pkl', 'rb') as f:
classifier = pickle.load(f)
mul_model = None
with open('models/model_0.0001_100.pkl', 'rb') as f:
mul_model = pickle.load(f)
def get_embedding(text):
if text is None:
text = ""
return model_labse.encode(text)
def get_categories(y_pred):
indices = []
for idx, value in enumerate(y_pred):
if value == 1:
indices.append(idx)
cats = [categories[i] for i in indices]
return cats
def get_words(doc_emb):
# load countvectorizers
cvects = {}
vocab = {} # load vocabulary of words for each lang
with open(input_cvect_key_file, "r") as fpr:
for line in fpr:
#print(line)
lang, fpath = line.strip().split()
with open(fpath, "rb") as fpr:
#print(f"loading {fpath}")
cvects[lang] = pickle.load(fpr)
vocab[lang] = cvects[lang].get_feature_names()
#print(
# "Loaded CountVectorizer for lang",
# lang,
# "with vocab size:",
# len(vocab[lang]),
#)
topn = 10 # top N words per cluster
#print(vocab["en"])
#print("MODEL KEYS")
#print(mul_model.E.keys())
doc_emb = doc_emb.flatten()
words_dict = {}
for lang in mul_model.E.keys():
#print(lang, end=": ")
scores = mul_model.E[lang] @ (doc_emb).T
k_ixs = np.argsort(scores)[::-1][:topn].squeeze() # sort them in descending order and pick topn
tmp = []
for i in k_ixs:
#print(vocab[lang][i], end=", ")
tmp.append(vocab[lang][i])
words_dict[lang] = tmp
#print()
return words_dict
def generate_output(article):
paragraphs = article.split("\n")
embdds = []
for par in paragraphs:
embdds.append(get_embedding(par))
embedding = np.average(embdds, axis=0)
#y_pred = classifier.predict_proba(embedding.reshape(1, 768))
reshaped = embedding.reshape(1, 768)
#y_pred = classifier.predict(reshaped)
#y_pred = y_pred.flatten()
y_prob = classifier.predict_proba(reshaped)
y_prob = y_prob.reshape(len(categories),1)
y_pred = [1 if x >= 0.5 else 0 for x in y_prob]
classes = get_categories(y_pred)
if len(classes) > 1:
classes_string = ', '.join(classes)
elif len(classes) == 1:
classes_string = classes[0]
else:
classes_string = 'No category was found.'
data = pd.DataFrame()
data['Category'] = categories
data['Probability'] = y_prob
fig = px.bar(data, x='Probability', y='Category', orientation='h', height=600)#, title="Category probability")
fig.update_xaxes(range=[0, 1])
fig.update_layout(margin=dict(l=5, r=5, t=20, b=5)) #paper_bgcolor="LightSteelBlue")
fig.update_traces(marker_color='rgb(158,202,225)')
#print(f"LEN Y_PROB {len(y_prob)}")
#print(f"LEN CAT {len(categories)}")
words_dict = get_words(reshaped)
words_string = ""
for lang, w in words_dict.items():
words_string += f"{lang}: "
words_string += ', '.join(w)
words_string += "\n"
return (classes_string, fig, words_string)
# demo = gr.Interface(fn=generate_output,
# inputs=gr.Textbox(lines=6, placeholder="Insert text of the article here...", label="Article"),
# outputs=[gr.Textbox(lines=1, label="Category"), gr.Plot(label="Category probability"), gr.Textbox(lines=5, label="Topic discovery")],
# title="Article classification & topic discovery demo",
# flagging_options=["Incorrect"],
# theme=gr.themes.Base())
#css=css_code)
demo = gr.Blocks(css=css_code, theme=gr.themes.Base(), title="Article classification & topic discovery demo")
with demo:
with gr.Row():
my_title = gr.HTML("<h1 align='center'>Article classification & topic discovery demo</h1>")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(lines=22, placeholder="Insert text of the article here...", label="Article")
with gr.Row():
clear_button = gr.Button("Clear")
submit_button = gr.Button("Submit")
with gr.Column():
with gr.Tabs():
with gr.TabItem("Classification"):
category_text = gr.Textbox(lines=1, label="Category")
category_plot = gr.Plot()
with gr.TabItem("Topic discovery"):
topic_text = gr.Textbox(lines=22, label="The most representative words")
submit_button.click(generate_output, inputs=input_text, outputs=[category_text, category_plot, topic_text])
clear_button.click(lambda: None, None, input_text, queue=False)
demo.launch()
|