Spaces:
Sleeping
Sleeping
File size: 11,369 Bytes
b1fdcc2 b0a9f8f b1fdcc2 cc1438e b1fdcc2 5472963 cc1438e b0a9f8f b1fdcc2 b0a9f8f b1fdcc2 9baeeda 72ad181 b1fdcc2 b0a9f8f 5472963 b1fdcc2 b0a9f8f 78dd18a b0a9f8f b1fdcc2 b0a9f8f b1fdcc2 b0a9f8f b1fdcc2 b0a9f8f 5e0ccc8 b0a9f8f 78dd18a 4c92361 b0a9f8f b1fdcc2 b0a9f8f 5472963 b0a9f8f 5472963 b0a9f8f b1fdcc2 b0a9f8f b1fdcc2 cc7efca b0a9f8f b1fdcc2 b0a9f8f b1fdcc2 cc7efca 5472963 cc7efca 5472963 cc7efca 644834b 3314a1f 644834b cc7efca b1fdcc2 8fefa43 b1fdcc2 b0a9f8f b1fdcc2 cc1438e b0a9f8f cc1438e 444aecb cc1438e 444aecb 644834b cc1438e 444aecb 9baeeda cc1438e 99a6014 b1fdcc2 78dd18a b1fdcc2 78dd18a b1fdcc2 b0a9f8f b1fdcc2 99a6014 b1fdcc2 444aecb b1fdcc2 444aecb b1fdcc2 2849148 8fefa43 b1fdcc2 8fefa43 b1fdcc2 b0a9f8f b1fdcc2 b0a9f8f b1fdcc2 8fefa43 b0a9f8f b1fdcc2 72ad181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
from pathlib import Path
from typing import List
from loguru import logger as log
import requests
import streamlit as st
from streamlit_option_menu import option_menu
from footer import footer
from header import header
from helpers import (
load_audio_segment,
load_list_of_songs,
plot_audio,
url_is_valid,
file_size_is_valid,
delete_old_files,
)
from service.demucs_runner import separator
from service.vocal_remover.runner import load_model, separate
from style import CSS_TABS
label_sources = {
"no_vocals.mp3": "๐ถ Instrumental",
"vocals.mp3": "๐ค Vocals",
"drums.mp3": "๐ฅ Drums",
"bass.mp3": "๐ธ Bass",
"guitar.mp3": "๐ธ Guitar",
"piano.mp3": "๐น Piano",
"other.mp3": "๐ถ Other",
}
separation_mode_to_model = {
"Vocals & Instrumental (Low Quality, Faster)": (
"vocal_remover",
["vocals.mp3", "no_vocals.mp3"],
),
"Vocals & Instrumental (High Quality, Slower)": ("htdemucs", ["vocals.mp3", "no_vocals.mp3"]),
"Vocals, Drums, Bass & Other (Slower)": (
"htdemucs",
["vocals.mp3", "drums.mp3", "bass.mp3", "other.mp3"],
),
"Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)": (
"htdemucs_6s",
["vocals.mp3", "drums.mp3", "bass.mp3", "guitar.mp3", "piano.mp3", "other.mp3"],
),
}
extensions = ["mp3", "wav", "ogg", "flac"]
out_path = Path("/tmp")
in_path = Path("/tmp")
@st.cache_data(show_spinner=False)
def get_sources(path, file_sources):
sources = {}
for file in file_sources:
fullpath = path / file
if fullpath.exists():
sources[file] = fullpath
return sources
def reset_execution():
st.session_state.executed = False
def show_results(model_name: str, dir_name_output: str, file_sources: List):
sources = get_sources(out_path / Path(model_name) / dir_name_output, file_sources)
tab_sources = st.tabs([f"**{label_sources.get(k)}**" for k in sources.keys()])
for i, (file, pathname) in enumerate(sources.items()):
with tab_sources[i]:
cols = st.columns(2)
with cols[0]:
auseg = load_audio_segment(pathname, "mp3")
st.image(
plot_audio(
auseg,
32767,
file=file,
model_name=model_name,
dir_name_output=dir_name_output,
),
use_column_width="always",
)
with cols[1]:
st.audio(str(pathname))
log.info(f"Displaying results for {dir_name_output} - {model_name}")
def body():
filename = None
name_song = None
st.markdown(
"<h4><center>Extract Vocals & Instrumental from any song</center></h4>",
unsafe_allow_html=True,
)
st.markdown(CSS_TABS, unsafe_allow_html=True)
cols = st.columns([1, 4, 1, 3, 1])
with cols[1]:
with st.columns([1, 8, 1])[1]:
option = option_menu(
menu_title=None,
options=["Examples", "Upload File", "From URL"],
icons=["cloud-upload-fill", "link-45deg", "music-note-list"],
orientation="horizontal",
styles={
"container": {
"width": "100%",
"height": "3.5rem",
"margin": "0px",
"padding": "0px",
},
"icon": {"font-size": "1rem"},
"nav-link": {
"display": "flex",
"height": "3rem",
"justify-content": "center",
"align-items": "center",
"text-align": "center",
"flex-direction": "column",
"font-size": "1rem",
"padding-left": "0px",
"padding-right": "0px",
},
},
key="option_separate",
)
if option == "Examples":
samples_song = load_list_of_songs(path="separate_songs.json")
if samples_song is not None:
name_song = st.selectbox(
label="Select a sample song and listen to sources separated",
options=list(samples_song.keys()) + [""],
format_func=lambda x: x.replace("_", " "),
index=len(samples_song),
key="select_example",
)
full_path = f"{in_path}/{name_song}"
if name_song != "" and Path(full_path).exists():
st.audio(full_path)
else:
name_song = None
elif option == "Upload File":
uploaded_file = st.file_uploader(
"Choose a file",
type=extensions,
key="file",
help="Supported formats: mp3, wav, ogg, flac.",
)
if uploaded_file is not None:
with st.spinner("Loading audio..."):
with open(in_path / uploaded_file.name, "wb") as f:
f.write(uploaded_file.getbuffer())
filename = uploaded_file.name
st.audio(uploaded_file)
elif option == "From URL":
url = st.text_input(
"Paste the URL of the audio file",
key="url_input",
help="Supported formats: mp3, wav, ogg, flac.",
)
if url != "" and url_is_valid(url):
with st.spinner("Downloading audio..."):
filename = url.split("/")[-1]
response = requests.get(url, stream=True)
if response.status_code == 200 and file_size_is_valid(
response.headers.get("Content-Length")
):
file_size = 0
with open(in_path / filename, "wb") as audio_file:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
audio_file.write(chunk)
file_size += len(chunk)
if not file_size_is_valid(file_size):
audio_file.close()
os.remove(in_path / filename)
filename = None
return
st.audio(f"{in_path}/{filename}")
else:
st.error(
"Failed to download audio file. Try to download it manually and upload it."
)
filename = None
with cols[3]:
separation_mode = st.selectbox(
"Choose the separation mode",
[
"Vocals & Instrumental (Low Quality, Faster)",
"Vocals & Instrumental (High Quality, Slower)",
"Vocals, Drums, Bass & Other (Slower)",
"Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)",
],
on_change=reset_execution(),
key="separation_mode",
)
if separation_mode == "Vocals & Instrumental (Low Quality, Faster)":
max_duration = 30
else:
max_duration = 15
model_name, file_sources = separation_mode_to_model[separation_mode]
if filename is not None:
song = load_audio_segment(in_path / filename, filename.split(".")[-1])
n_secs = round(len(song) / 1000)
if os.environ.get("ENV_LIMITATION", False):
with cols[3]:
start_time = st.number_input(
"Choose the start time",
min_value=0,
max_value=n_secs,
step=1,
value=0,
help=f"Maximum duration is {max_duration} seconds for this separation mode.\nDuplicate this space to [remove any limit](https://github.com/fabiogra/moseca#are-there-any-limitations).",
format="%d",
)
st.session_state.start_time = start_time
end_time = min(start_time + max_duration, n_secs)
song = song[start_time * 1000 : end_time * 1000]
st.info(
f"Audio source will be processed from {start_time} to {end_time} seconds.\nDuplicate this space to [remove any limit](https://github.com/fabiogra/moseca#are-there-any-limitations).",
icon="โฑ",
)
else:
start_time = 0
end_time = n_secs
with st.columns([2, 1, 2])[1]:
execute = st.button(
"Separate Music Sources ๐ถ", type="primary", use_container_width=True
)
if execute or st.session_state.executed:
if execute:
st.session_state.executed = False
if not st.session_state.executed:
log.info(f"{option} - Separating {filename} with {separation_mode}...")
song.export(in_path / filename, format=filename.split(".")[-1])
with st.columns([1, 1, 1])[1]:
with st.spinner("Separating source audio, it will take a while..."):
if model_name == "vocal_remover":
model, device = load_model(pretrained_model="baseline.pth")
separate(
input=in_path / filename,
model=model,
device=device,
output_dir=out_path,
)
else:
stem = None
if separation_mode == "Vocals & Instrumental (High Quality, Slower)":
stem = "vocals"
separator(
tracks=[in_path / filename],
out=out_path,
model=model_name,
shifts=1,
overlap=0.5,
stem=stem,
int24=False,
float32=False,
clip_mode="rescale",
mp3=True,
mp3_bitrate=320,
verbose=True,
start_time=start_time,
end_time=end_time,
)
dir_name_output = ".".join(filename.split(".")[:-1])
filename = None
st.session_state.executed = True
show_results(model_name, dir_name_output, file_sources)
elif name_song is not None and option == "Examples":
show_results(model_name, name_song, file_sources)
if __name__ == "__main__":
header()
body()
footer()
delete_old_files("/tmp", 60 * 30)
|