Spaces:
Sleeping
Sleeping
File size: 1,780 Bytes
b1fdcc2 b0a9f8f b1fdcc2 b0a9f8f b1fdcc2 4c92361 b1fdcc2 4c92361 b0a9f8f 4c92361 b1fdcc2 4c92361 b0a9f8f 4c92361 b1fdcc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import argparse
from pathlib import Path
import warnings
from app.service.vocal_remover.runner import load_model, separate
from app.service.demucs_runner import separator
warnings.simplefilter("ignore", UserWarning)
warnings.simplefilter("ignore", FutureWarning)
warnings.filterwarnings("ignore", module="streamlit")
def main():
p = argparse.ArgumentParser()
p.add_argument("--gpu", "-g", type=int, default=-1)
p.add_argument("--pretrained_model", "-P", type=str, default="baseline.pth")
p.add_argument("--input", "-i", required=True)
p.add_argument("--output_dir", "-o", type=str, default="")
p.add_argument("--full_mode", "-n", default=False)
args = p.parse_args()
print(args)
input_file = args.input
full_mode = bool(args.full_mode)
model, device = load_model(pretrained_model=args.pretrained_model)
if full_mode:
separate(
input=input_file,
model=model,
device=device,
output_dir=args.output_dir,
)
for stem, model_name in [("vocals", "htdemucs"), (None, "htdemucs"), (None, "htdemucs_6s")]:
separator(
tracks=[Path(input_file)],
out=Path(args.output_dir),
model=model_name,
shifts=1,
overlap=0.5,
stem=stem,
int24=False,
float32=False,
clip_mode="rescale",
mp3=True,
mp3_bitrate=320,
verbose=False,
)
else:
separate(
input=input_file,
model=model,
device=device,
output_dir=args.output_dir,
only_no_vocals=True,
)
if __name__ == "__main__":
main()
|