File size: 4,328 Bytes
3a18ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5063eb
4045f11
e264be8
dfee1e5
 
e264be8
d5063eb
 
 
 
 
dfee1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a18ad0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image

st.set_page_config(page_title='Fast Food Classification Dataset Analysis', layout='wide', initial_sidebar_state='expanded')

def run():

    # Buat Title
    st.title('EDA on Fast Food Classification')

    # Buat Deskripsi
    st.subheader('Written by Franciscus Andrew Sunanda, FTDS-RMT-018')

    st.markdown('---')

    
    st.write('Dataset         : Fast Food Classification')

    st.write('Objective       : To create a model that can predict the type of a fast food based on image')
    

    st.markdown('---')
    
    
    # Define batch size and image size
    batch_size = 256
    img_size = (64, 64)
    # Define paths to the data folders
    script_dir = os.path.dirname(os.path.abspath(__file__))
    
    train_path = os.path.join(script_dir, 'food', 'Train')
    valid_path = os.path.join(script_dir, 'food', 'Valid')
    test_path = os.path.join(script_dir, 'food', 'Test')
    # Create data generators for training, validation, and testing
    train_datagen = ImageDataGenerator(
        rescale=1./255, 
        horizontal_flip=True
    )

    valid_datagen = ImageDataGenerator(
        rescale=1./255
    )
    test_datagen = ImageDataGenerator(
        rescale=1./255
    )

    train_generator = train_datagen.flow_from_directory(
    train_path, 
    target_size=img_size, 
    batch_size=batch_size, 
    class_mode='categorical'
    )

    valid_generator = valid_datagen.flow_from_directory(
        valid_path, 
        target_size=img_size, 
        batch_size=batch_size, 
        class_mode='categorical'
    )

    test_generator = test_datagen.flow_from_directory(
        test_path,                                                 
        target_size=img_size, 
        batch_size=batch_size, 
        class_mode='categorical'
    )

    st.write('## Showing Random Samples')
    class_names = list(train_generator.class_indices.keys())
    train_classes = pd.Series(train_generator.classes)
    test_classes = pd.Series(test_generator.classes)
    valid_classes = pd.Series(valid_generator.classes)
    # Plot some samples from each class
    fig, ax = plt.subplots(nrows=2, ncols=5, figsize=(10, 6), subplot_kw={'xticks': [], 'yticks': []})
    for i, axi in enumerate(ax.flat):
        img = plt.imread(f'{train_path}/{class_names[i]}/{os.listdir(train_path+"/"+class_names[i])[0]}')
        axi.imshow(img)
        axi.set_title(class_names[i])
    plt.tight_layout()
    st.pyplot(fig)


    st.markdown('---')

    st.write('## Balance Classification')

   # Create a pandas dataframe to show the distribution of classes in train, test, and validation data
    df = pd.concat([train_classes.value_counts(), test_classes.value_counts(), valid_classes.value_counts()], axis=1)
    df.columns = ['Training Data', 'Test Data', 'Validation Data']
    df.index = class_names

    fig, ax = plt.subplots(figsize=(12, 6))
    df.plot(kind='bar', stacked=False, ax=ax, width=0.8)
    plt.xlabel('Class')
    plt.ylabel('Data Distribution')
    plt.title('Data Distribution for each class')
    plt.xticks(rotation=45, ha='right')
    st.pyplot(fig)


    st.markdown('---')

    st.write('## Mean Pixel Value')

    # Plot the mean of pixel mean of each channel for each class (unstacked bar chart)
    means = []
    for i in range(len(class_names)):
        class_name = class_names[i]
        img_path = os.path.join(train_path, class_name, os.listdir(os.path.join(train_path, class_name))[0])
        img = image.load_img(img_path, target_size=img_size)
        img_array = image.img_to_array(img)
        means.append(np.mean(img_array, axis=(0, 1)))
    means_df = pd.DataFrame(means, columns=['Red', 'Green', 'Blue'])
    means_df.index = class_names
    fig, ax = plt.subplots(figsize=(12, 6))
    means_df.plot(kind='bar', stacked=False, ax=ax, width=0.8)
    plt.xlabel('Class')
    plt.ylabel('Mean pixel value')
    plt.title('Mean pixel value of each channel for each class')
    plt.xticks(rotation=45, ha='right')
    st.pyplot(fig)

    st.markdown('---')

    

    
if __name__ == '__main__':
    run()