Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,410 Bytes
47b193f 311dc3a 167137b 03480fc 167137b 2f78375 167137b 4ae93a7 4df8d2a 167137b 03480fc 47b193f 03480fc 3f7c9ec 03480fc 167137b 4df8d2a 167137b 4df8d2a 167137b 311dc3a 167137b 311dc3a 2f78375 4ae93a7 2f78375 167137b 4ae93a7 2f78375 167137b 2f78375 167137b 2f78375 167137b 2f78375 167137b 6601027 167137b 4df8d2a 0bc5161 167137b 2f78375 167137b 0bc5161 167137b 006f173 0bc5161 167137b 311dc3a 167137b bce77cb 3c49dce 3a19901 051e909 3c49dce bce77cb 3c49dce d4450b3 d2967a8 84c43bd 0bc5161 d4450b3 3c49dce 2f78375 3a19901 167137b 2f78375 167137b 2f78375 167137b 2f78375 167137b 2f78375 167137b 311dc3a 0bc5161 4733a9c 0bc5161 167137b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import os
import pickle
import pandas as pd
import gradio as gr
import plotly.express as px
from datetime import datetime
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
from utils import (
KEY_TO_CATEGORY_NAME,
CAT_NAME_TO_EXPLANATION,
download_latest_data_from_space,
get_constants,
update_release_date_mapping,
format_data,
)
###################
### Initialize scheduler
###################
def restart_space():
HfApi(token=os.getenv("HF_TOKEN", None)).restart_space(
repo_id="andrewrreed/closed-vs-open-arena-elo"
)
print(f"Space restarted on {datetime.now()}")
# restart the space every day at 9am
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "cron", day_of_week="mon-sun", hour=7, minute=0)
scheduler.start()
###################
### Load Data
###################
# gather ELO data
latest_elo_file_local = download_latest_data_from_space(
repo_id="lmsys/chatbot-arena-leaderboard", file_type="pkl"
)
with open(latest_elo_file_local, "rb") as fin:
elo_results = pickle.load(fin)
arena_dfs = {}
for k in KEY_TO_CATEGORY_NAME.keys():
if k not in elo_results:
continue
arena_dfs[KEY_TO_CATEGORY_NAME[k]] = elo_results[k]["leaderboard_table_df"]
# gather open llm leaderboard data
latest_leaderboard_file_local = download_latest_data_from_space(
repo_id="lmsys/chatbot-arena-leaderboard", file_type="csv"
)
leaderboard_df = pd.read_csv(latest_leaderboard_file_local)
# load release date mapping data
release_date_mapping = pd.read_json("release_date_mapping.json", orient="records")
###################
### Prepare Data
###################
# update release date mapping with new models
# check for new models in ELO data
new_model_keys_to_add = [
model
for model in arena_dfs["Overall"].index.to_list()
if model not in release_date_mapping["key"].to_list()
]
if new_model_keys_to_add:
release_date_mapping = update_release_date_mapping(
new_model_keys_to_add, leaderboard_df, release_date_mapping
)
# merge leaderboard data with ELO data
merged_dfs = {}
for k, v in arena_dfs.items():
merged_dfs[k] = (
pd.merge(arena_dfs[k], leaderboard_df, left_index=True, right_on="key")
.sort_values("rating", ascending=False)
.reset_index(drop=True)
)
# add release dates into the merged data
for k, v in merged_dfs.items():
merged_dfs[k] = pd.merge(
merged_dfs[k], release_date_mapping[["key", "Release Date"]], on="key"
)
# format dataframes
merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}
# get constants
min_elo_score, max_elo_score, upper_models_per_month = get_constants(merged_dfs)
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
###################
### Plot Data
###################
def get_data_split(dfs, set_name):
df = dfs[set_name].copy(deep=True)
return df.reset_index(drop=True)
def build_plot(min_score, max_models_per_month, toggle_annotations, set_selector):
df = get_data_split(merged_dfs, set_name=set_selector)
# filter data
filtered_df = df[(df["rating"] >= min_score)]
filtered_df = (
filtered_df.groupby(["Month-Year", "License"])
.apply(
lambda x: x.nlargest(max_models_per_month, "rating"), include_groups=True
)
.reset_index(drop=True)
)
# construct plot
custom_colors = {"Open": "#ff7f0e", "Proprietary": "#1f77b4"}
fig = px.scatter(
filtered_df,
x="Release Date",
y="rating",
color="License",
hover_name="Model",
hover_data=["Organization", "License", "Link"],
trendline="ols",
title=f"Open vs Proprietary LLMs by LMSYS Arena ELO Score<br>(as of {date_updated})",
labels={"rating": "Arena ELO", "Release Date": "Release Date"},
height=700,
template="plotly_dark",
color_discrete_map=custom_colors,
)
fig.update_layout(
plot_bgcolor="rgba(0,0,0,0)", # Set background color to transparent
paper_bgcolor="rgba(0,0,0,0)", # Set paper (plot) background color to transparent
title={"x": 0.5},
)
fig.update_traces(marker=dict(size=10, opacity=0.6))
if toggle_annotations:
# get the points to annotate (only the highest rated model per month per license)
idx_to_annotate = filtered_df.groupby(["Month-Year", "License"])[
"rating"
].idxmax()
points_to_annotate_df = filtered_df.loc[idx_to_annotate]
for i, row in points_to_annotate_df.iterrows():
fig.add_annotation(
x=row["Release Date"],
y=row["rating"],
text=row["Model"],
showarrow=True,
arrowhead=0,
)
return fig
set_dark_mode = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue=gr.themes.colors.sky,
secondary_hue=gr.themes.colors.green,
# spacing_size=gr.themes.sizes.spacing_sm,
text_size=gr.themes.sizes.text_sm,
font=[
gr.themes.GoogleFont("Open Sans"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
),
js=set_dark_mode,
) as demo:
gr.Markdown(
"""
<div style="text-align: center; max-width: 650px; margin: auto;">
<h1 style="font-weight: 900; margin-top: 5px;">🔬 Progress Tracker: Open vs. Proprietary LLMs 🔬</h1>
<p style="text-align: left; margin-top: 30px; margin-bottom: 30px; line-height: 20px;">
This app visualizes the progress of proprietary and open-source LLMs over time as scored by the <a href="https://leaderboard.lmsys.org/">LMSYS Chatbot Arena</a>.
The idea is inspired by <a href="https://www.linkedin.com/posts/maxime-labonne_arena-elo-graph-updated-with-new-models-activity-7187062633735368705-u2jB">this great work</a>
from <a href="https://huggingface.co/mlabonne/">Maxime Labonne</a>, and is intended to stay up-to-date as new models are released and evaluated.
<div style="text-align: left;">
<strong>Plot info:</strong>
<br>
<ul style="padding-left: 20px;">
<li> The ELO score (y-axis) is a measure of the relative strength of a model based on its performance against other models in the arena. </li>
<li> The Release Date (x-axis) corresponds to when the model was first publicly released or when its ELO results were first reported (for ease of automated updates). </li>
<li> Trend lines are based on Ordinary Least Squares (OLS) regression and adjust based on the filter criteria. </li>
<ul>
</div>
</p>
</div>
"""
)
with gr.Row(variant="compact"):
set_selector = gr.Dropdown(
choices=list(CAT_NAME_TO_EXPLANATION.keys()),
label="Select Category",
value="Overall",
info="Select the category to visualize",
)
min_score = gr.Slider(
minimum=min_elo_score,
maximum=max_elo_score,
value=(max_elo_score - min_elo_score) * 0.3 + min_elo_score,
step=50,
label="Minimum ELO Score",
info="Filter out low scoring models",
)
max_models_per_month = gr.Slider(
value=upper_models_per_month - 2,
minimum=1,
maximum=upper_models_per_month,
step=1,
label="Max Models per Month (per License)",
info="Limit to N best models per month per license to reduce clutter",
)
toggle_annotations = gr.Radio(
choices=[True, False],
label="Overlay Best Model Name",
value=True,
info="Toggle to overlay the name of the best model per month per license",
)
# Show plot
plot = gr.Plot()
demo.load(
fn=build_plot,
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
outputs=plot,
)
min_score.change(
fn=build_plot,
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
outputs=plot,
)
max_models_per_month.change(
fn=build_plot,
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
outputs=plot,
)
toggle_annotations.change(
fn=build_plot,
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
outputs=plot,
)
set_selector.change(
fn=build_plot,
inputs=[min_score, max_models_per_month, toggle_annotations, set_selector],
outputs=plot,
)
gr.Markdown(
"""
<div style="text-align: center; max-width: 650px; margin: auto;">
<p style="margin-top: 40px;"> If you have any questions, feel free to open a discussion or <a href="https://twitter.com/andrewrreed">reach out to me on social</a>. </p>
</p>
</div>
"""
)
demo.launch()
|