File size: 3,501 Bytes
0f14897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from ngram import NGram


def post_process_template(tB):
    if tB.endswith('.') == False:
        tB += '.'
    return tB
    # return tB.split('.')[0] + '.'


def construct_template(words, templateA, if_then=False):
    if len(words) == 2:
        # template = ['{} <mask> {}.'.format(words[0], words[1])]
        templates = [
            # '{} is <mask> {}.'.format(words[0], words[1]), 
            '{} <mask> {}.'.format(words[0], words[1]),
        ]
    elif len(words) == 1:
        templates = [
            # '{} is <mask>.'.format(words[0]),
            '{} <mask>.'.format(words[0])]

    elif len(words) == 0:
        templates = []

    if if_then:
        for word in words:
            index = templateA.index('<mask>')
            templateA = templateA[:index] + word + templateA[index + len('<mask>'):]
        templates = ['If ' + templateA + ' then ' + template for template in templates]

    return templates


def filter_words(words_prob):
    word_count = {}
    token1_count = {}
    word2_count = {}
    ret = []
    for words, prob, *_ in words_prob:
        filter_this = False

        # filter repetitive token
        token_count = {}
        for word in words:
            for token in word.split(' '):
                if token in token_count:
                    filter_this = True
                token_count[token] = 1
        if filter_this:
            prob *= 0.5

        # filter repetitive words
        if len(words) == 2 and words[0] == words[1]:
            continue

        # filter repetitive first token
        token1 = words[0].split(' ')[0]
        if token1 not in token1_count:
            token1_count[token1] = 1
        else:
            token1_count[token1] += 1
            prob /= token1_count[token1]

        for word in words:
            if word not in word_count:
                word_count[word] = 0
            word_count[word] += 1
            prob /= word_count[word]

        if len(words) == 2:
            if words[1] not in word2_count:
                word2_count[words[1]] = 0
            word2_count[words[1]] += 1
            prob /= word2_count[words[1]]

        ret.append([words, prob])
    return sorted(ret, key=lambda x: x[1], reverse=True)


import math
from copy import deepcopy


def convert_for_print(arr):
    ret = deepcopy(arr)
    for i in range(len(ret)):
        ret[i][1] = round(ret[i][1], 7)
        if len(ret[i]) == 3:
            for j in range(len(ret[i][2])):
                ret[i][2][j] = round(ret[i][2][j], 7)
    return ret


def formalize_tA(tA):
    tA = tA.strip()
    if tA.endswith('.'):
        tA = tA[:-1].strip() + '.'
    else:
        tA += '.'
    tA = tA.replace(' ,', ',')
    tA = tA.replace(" '", "'")
    return tA


ngram_n = 3


def extract_similar_words(txt, words):
    max_word_length = 0
    for word in words:
        if len(word) > max_word_length:
            max_word_length = len(word)

    txt_ngrams = []
    for i in range(len(txt)):
        for j in range(i + ngram_n, min(len(txt), i + max_word_length + 5)):
            txt_ngrams.append(txt[i:j].lower())
    n = NGram(txt_ngrams, key=lambda x: x.lower(), N=ngram_n)
    ret = []
    for word in words:
        matched_word = n.find(word.lower(), 0.5)
        if matched_word is None:
            return None
        ret.append(matched_word)
    return ret


def extract_words(txt, words):
    for word in words:
        if word not in txt:
            return None
    return [word.lower() for word in words]