File size: 7,939 Bytes
1df87f7
 
 
 
 
 
c9eef8d
 
 
 
 
 
 
 
 
 
 
 
1df87f7
aadfe5b
c9eef8d
f753ea3
cf34ad5
5e862ae
c9eef8d
f753ea3
a143d8f
aadfe5b
 
 
 
a143d8f
 
c9eef8d
 
 
aadfe5b
 
 
 
04d1db9
 
d7fe16c
04d1db9
 
 
 
d7fe16c
 
 
 
04d1db9
d7fe16c
04d1db9
 
 
 
d7fe16c
 
 
 
04d1db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df87f7
04d1db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960e361
aadfe5b
 
 
 
960e361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aadfe5b
 
 
1df87f7
04d1db9
 
 
1df87f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "ename": "",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31mRunning cells with 'Python 3.12.0' requires the ipykernel package.\n",
      "\u001b[1;31mRun the following command to install 'ipykernel' into the Python environment. \n",
      "\u001b[1;31mCommand: '/usr/local/bin/python3.12 -m pip install ipykernel -U --user --force-reinstall'"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import sys\n",
    "\n",
    "# Set PYTHONPATH to the project root \n",
    "# Solves all problems w subfolders - option1\n",
    "os.environ[\"PYTHONPATH\"] = os.path.abspath(os.path.join(\"..\"))\n",
    "\n",
    "import random\n",
    "from huggingface_hub import InferenceClient\n",
    "from PIL import Image\n",
    "from google.colab import userdata\n",
    "from IPython.display import display, clear_output\n",
    "import ipywidgets as widgets\n",
    "from datetime import datetime\n",
    "from config.config_colab import api_token\n",
    "from config.models import models\n",
    "from config.prompts import generate_prompt\n",
    "\n",
    "# Initialize the InferenceClient with the default model\n",
    "client = InferenceClient(models[0][\"name\"], token=api_token)\n",
    "\n",
    "\n",
    "# Input for left castle HP\n",
    "left_hp_input = widgets.IntSlider(\n",
    "    value=100,\n",
    "    min=0,\n",
    "    max=100,\n",
    "    step=1,\n",
    "    description=\"Left Castle HP:\",\n",
    "    style={\"description_width\": \"initial\"}\n",
    ")\n",
    "\n",
    "# Input for right castle HP\n",
    "right_hp_input = widgets.IntSlider(\n",
    "    value=100,\n",
    "    min=0,\n",
    "    max=100,\n",
    "    step=1,\n",
    "    description=\"Right Castle HP:\",\n",
    "    style={\"description_width\": \"initial\"}\n",
    ")\n",
    "\n",
    "# Input for height\n",
    "height_input = widgets.IntText(\n",
    "    value=512,\n",
    "    description=\"Height:\",\n",
    "    style={\"description_width\": \"initial\"}\n",
    ")\n",
    "\n",
    "# Input for width\n",
    "width_input = widgets.IntText(\n",
    "    value=1024,\n",
    "    description=\"Width:\",\n",
    "    style={\"description_width\": \"initial\"}\n",
    ")\n",
    "\n",
    "# Input for number of inference steps\n",
    "num_inference_steps_input = widgets.IntSlider(\n",
    "    value=20,\n",
    "    min=10,\n",
    "    max=100,\n",
    "    step=1,\n",
    "    description=\"Inference Steps:\",\n",
    "    style={\"description_width\": \"initial\"}\n",
    ")\n",
    "\n",
    "# Input for guidance scale (default set to 2)\n",
    "guidance_scale_input = widgets.FloatSlider(\n",
    "    value=2.0,  # Default set to 2\n",
    "    min=1.0,\n",
    "    max=20.0,\n",
    "    step=0.5,\n",
    "    description=\"Guidance Scale:\",\n",
    "    style={\"description_width\": \"initial\"}\n",
    ")\n",
    "\n",
    "# Input for seed\n",
    "seed_input = widgets.IntText(\n",
    "    value=random.randint(0, 1000000),\n",
    "    description=\"Seed:\",\n",
    "    style={\"description_width\": \"initial\"}\n",
    ")\n",
    "\n",
    "# Checkbox to randomize seed\n",
    "randomize_seed_checkbox = widgets.Checkbox(\n",
    "    value=True,\n",
    "    description=\"Randomize Seed\",\n",
    "    style={\"description_width\": \"initial\"}\n",
    ")\n",
    "\n",
    "# Button to generate image\n",
    "generate_button = widgets.Button(\n",
    "    description=\"Generate Image\",\n",
    "    button_style=\"success\"\n",
    ")\n",
    "\n",
    "\n",
    "# Output area to display the image\n",
    "output = widgets.Output()\n",
    "\n",
    "\n",
    "# Function to generate images based on the HP values\n",
    "def generate_image(left_hp, right_hp, height, width, num_inference_steps, guidance_scale, seed):\n",
    "    # Generate the prompt\n",
    "    prompt = generate_prompt(left_hp, right_hp)\n",
    "\n",
    "    try:\n",
    "        # Randomize the seed if the checkbox is checked\n",
    "        if randomize_seed_checkbox.value:\n",
    "            seed = random.randint(0, 1000000)\n",
    "            seed_input.value = seed  # Update the seed input box\n",
    "\n",
    "        print(f\"Using seed: {seed}\")\n",
    "\n",
    "        # Debug: Indicate that the image is being generated\n",
    "        print(\"Generating image... Please wait.\")\n",
    "\n",
    "        # Initialize the InferenceClient with the selected model\n",
    "        client = InferenceClient(models[0][\"name\"], token=api_token)\n",
    "\n",
    "        # Generate the image using the Inference API with parameters\n",
    "        image = client.text_to_image(\n",
    "            prompt,\n",
    "            guidance_scale=guidance_scale,  # Guidance scale\n",
    "            num_inference_steps=num_inference_steps,  # Number of inference steps\n",
    "            width=width,  # Width\n",
    "            height=height,  # Height\n",
    "            seed=seed  # Random seed\n",
    "        )\n",
    "        return image\n",
    "    except Exception as e:\n",
    "        return f\"An error occurred: {e}\"\n",
    "\n",
    "# Function to handle button click event\n",
    "def on_generate_button_clicked(b):\n",
    "    with output:\n",
    "        clear_output(wait=True)  # Clear previous output\n",
    "        left_hp = left_hp_input.value\n",
    "        right_hp = right_hp_input.value\n",
    "        height = height_input.value\n",
    "        width = width_input.value\n",
    "        num_inference_steps = num_inference_steps_input.value\n",
    "        guidance_scale = guidance_scale_input.value\n",
    "        seed = seed_input.value\n",
    "\n",
    "        # Debug: Show selected parameters\n",
    "        print(f\"Left Castle HP: {left_hp}\")\n",
    "        print(f\"Right Castle HP: {right_hp}\")\n",
    "        print(f\"Height: {height}\")\n",
    "        print(f\"Width: {width}\")\n",
    "        print(f\"Inference Steps: {num_inference_steps}\")\n",
    "        print(f\"Guidance Scale: {guidance_scale}\")\n",
    "        print(f\"Seed: {seed}\")\n",
    "\n",
    "        # Generate the image\n",
    "        image = generate_image(left_hp, right_hp, height, width, num_inference_steps, guidance_scale, seed)\n",
    "\n",
    "        if isinstance(image, str):\n",
    "            print(image)\n",
    "        else:\n",
    "            # Debug: Indicate that the image is being displayed and saved\n",
    "            print(\"Image generated successfully!\")\n",
    "            print(\"Displaying image...\")\n",
    "\n",
    "            # Display the image in the notebook\n",
    "            display(image)\n",
    "\n",
    "            # Save the image with a timestamped filename\n",
    "            timestamp = datetime.now().strftime(\"%Y%m%d_%H%M%S\")\n",
    "            output_filename = f\"{timestamp}_left_{left_hp}_right_{right_hp}.png\"\n",
    "            print(f\"Saving image as {output_filename}...\")\n",
    "            image.save(output_filename)\n",
    "            print(f\"Image saved as {output_filename}\")\n",
    "\n",
    "\n",
    "# Attach the button click event handler\n",
    "generate_button.on_click(on_generate_button_clicked)\n",
    "\n",
    "# Display the widgets\n",
    "#display(left_hp_input, right_hp_input, height_input, width_input, num_inference_steps_input, guidance_scale_input, seed_input, randomize_seed_checkbox, generate_button, output)\n",
    "\n",
    "display(left_hp_input, right_hp_input, generate_button, output)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "name": "python",
   "version": "3.12.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}