File size: 5,217 Bytes
5742cc4
 
 
 
 
 
 
 
 
 
 
 
 
be00ed0
 
 
092bbd9
3468859
cd73668
106be34
be760a8
 
be00ed0
f3a8499
faf3b5a
be00ed0
 
faf3b5a
bd05d51
ea90c07
 
29ee7d6
3468859
faf3b5a
c1032b4
 
 
 
 
cb1b3ee
 
 
06c3a08
62d753f
63e8ec2
 
 
 
7e834ca
4724f8d
252de51
bd05d51
3468859
dc03340
3468859
 
04fe6a3
d7433ab
23660f2
 
d3980a6
23660f2
9450d3d
b6ebbc6
bd05d51
e54a3e7
 
 
 
12f35c0
b92c569
 
 
e54a3e7
 
 
 
b92c569
e54a3e7
d479416
3468859
 
 
 
faf3b5a
3468859
faf3b5a
e54a3e7
 
 
 
 
 
 
3468859
faf3b5a
ad1ce7c
 
 
 
 
31d8e62
 
 
 
e54a3e7
31d8e62
c61f316
d893701
c61f316
d893701
c61f316
bd05d51
1bdaa95
 
e9e6a5d
 
 
 
 
1bdaa95
e9e6a5d
 
 
 
1bdaa95
 
 
19b6500
8723c23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
title: 'livermask: Automatic Liver Parenchyma and vessel segmentation in CT'
colorFrom: indigo
colorTo: indigo
sdk: docker
app_port: 7860
emoji: 🚀
pinned: false
license: mit
app_file: demo/app.py
---


<div align="center">
<h1 align="center">livermask</h1>
<h3 align="center">Automatic liver parenchyma and vessel segmentation in CT using deep learning</h3>

[![license](https://img.shields.io/github/license/DAVFoundation/captain-n3m0.svg?style=flat-square)](https://github.com/DAVFoundation/captain-n3m0/blob/master/LICENSE)
[![Build Actions Status](https://github.com/andreped/livermask/workflows/Build/badge.svg)](https://github.com/andreped/livermask/actions)
[![DOI](https://zenodo.org/badge/238680374.svg)](https://zenodo.org/badge/latestdoi/238680374)
[![GitHub Downloads](https://img.shields.io/github/downloads/andreped/livermask/total?label=GitHub%20downloads&logo=github)](https://github.com/andreped/livermask/releases)
[![Pip Downloads](https://img.shields.io/pypi/dm/livermask?label=pip%20downloads&logo=python)](https://pypi.org/project/livermask/)
 
**livermask** was developed by SINTEF Medical Technology to provide an open tool to accelerate research.

<img src="figures/Segmentation_3DSlicer.PNG" width="70%">
</div>

## Install

```
pip install livermask
```

Alternatively, to install from source do:
```
pip install git+https://github.com/andreped/livermask.git
```

As TensorFlow 2.4 only supports Python 3.6-3.8, so does livermask. Software 
is also compatible with Anaconda. However, best way of installing livermask is using `pip`, which
also works for conda environments.

(Optional) To add GPU inference support for liver vessel segmentation (which uses Chainer and CuPy), you need to install [CuPy](https://github.com/cupy/cupy). This can be easily done by adding `cupy-cudaX`, where `X` is the CUDA version you have installed, for instance `cupy-cuda110` for CUDA-11.0:
```
pip install cupy-cuda110
```

Program has been tested using Python 3.7 on Windows, macOS, and Ubuntu Linux 20.04.

## Usage

```
livermask --input path-to-input --output path-to-output
```

|  command<img width=10/> | description |
| ------------------- | ------------- |
| `--input`  | the full path to the input data. Could be nifti file or directory (if directory is provided as input) |
| `--output`  | the full path to the output data. Could be either output name or directory (if directory is provided as input)  |
| `--cpu`  | to disable the GPU (force computations on CPU only) |
| `--verbose`  | to enable verbose |
| `--vessels` | to segment vessels |
| `--extension` | which extension to save output in (default: `.nii`) |

<details open>
<summary>

### Using code directly</summary>
If you wish to use the code directly (not as a CLI and without installing), you can run this command:
```
python -m livermask.livermask --input path-to-input --output path-to-output
```
</details>

<details>
<summary>

### DICOM/NIfTI format</summary>
Pipeline assumes input is in the NIfTI format, and output a binary volume in the same format (.nii or .nii.gz).
DICOM can be converted to NIfTI using the CLI [dcm2niix](https://github.com/rordenlab/dcm2niix), as such:
```
dcm2niix -s y -m y -d 1 "path_to_CT_folder" "output_name"
```

Note that "-d 1" assumed that "path_to_CT_folder" is the folder just before the set of DICOM scans you want to import and convert. This can be removed if you want to convert multiple ones at the same time. It is possible to set "." for "output_name", which in theory should output a file with the same name as the DICOM folder, but that doesn't seem to happen...

</details>


<details>
<summary>

### Troubleshooting</summary>
You might have issues downloading the model when using VPN. If any issues are observed, try to disable VPN and try again.

If the program struggles to install, attempt to install using:
```
pip install --force-reinstall --no-deps git+https://github.com/andreped/livermask.git
```

If you experience issues with numpy after installing CuPy, try reinstalling CuPy with this extension:
```
pip install 'cupy-cuda110>=7.7.0,<8.0.0'
```
</details>

## Applications of livermask
* Pérez de Frutos et al., Learning deep abdominal CT registration through adaptive loss weighting and synthetic data generation, PLOS ONE, 2023, 
https://doi.org/10.1371/journal.pone.0282110
* Survarachakan et al., Effects of Enhancement on Deep Learning Based Hepatic Vessel Segmentation, Electronics, https://doi.org/10.3390/electronics10101165

## Acknowledgements
If you found this tool helpful in your research, please, consider citing it:
<pre>
@software{andre_pedersen_2023_7574587,
  author       = {André Pedersen and Javier Pérez de Frutos},
  title        = {andreped/livermask: v1.4.1},
  month        = jan,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {v1.4.1},
  doi          = {10.5281/zenodo.7574587},
  url          = {https://doi.org/10.5281/zenodo.7574587}
}
</pre>

Information on how to cite can be found [here](https://zenodo.org/badge/latestdoi/238680374).

The model was trained on the LITS dataset. The dataset is openly accessible and can be downloaded from [here](https://competitions.codalab.org/competitions/17094).