File size: 5,217 Bytes
5742cc4 be00ed0 092bbd9 3468859 cd73668 106be34 be760a8 be00ed0 f3a8499 faf3b5a be00ed0 faf3b5a bd05d51 ea90c07 29ee7d6 3468859 faf3b5a c1032b4 cb1b3ee 06c3a08 62d753f 63e8ec2 7e834ca 4724f8d 252de51 bd05d51 3468859 dc03340 3468859 04fe6a3 d7433ab 23660f2 d3980a6 23660f2 9450d3d b6ebbc6 bd05d51 e54a3e7 12f35c0 b92c569 e54a3e7 b92c569 e54a3e7 d479416 3468859 faf3b5a 3468859 faf3b5a e54a3e7 3468859 faf3b5a ad1ce7c 31d8e62 e54a3e7 31d8e62 c61f316 d893701 c61f316 d893701 c61f316 bd05d51 1bdaa95 e9e6a5d 1bdaa95 e9e6a5d 1bdaa95 19b6500 8723c23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
title: 'livermask: Automatic Liver Parenchyma and vessel segmentation in CT'
colorFrom: indigo
colorTo: indigo
sdk: docker
app_port: 7860
emoji: 🚀
pinned: false
license: mit
app_file: demo/app.py
---
<div align="center">
<h1 align="center">livermask</h1>
<h3 align="center">Automatic liver parenchyma and vessel segmentation in CT using deep learning</h3>
[![license](https://img.shields.io/github/license/DAVFoundation/captain-n3m0.svg?style=flat-square)](https://github.com/DAVFoundation/captain-n3m0/blob/master/LICENSE)
[![Build Actions Status](https://github.com/andreped/livermask/workflows/Build/badge.svg)](https://github.com/andreped/livermask/actions)
[![DOI](https://zenodo.org/badge/238680374.svg)](https://zenodo.org/badge/latestdoi/238680374)
[![GitHub Downloads](https://img.shields.io/github/downloads/andreped/livermask/total?label=GitHub%20downloads&logo=github)](https://github.com/andreped/livermask/releases)
[![Pip Downloads](https://img.shields.io/pypi/dm/livermask?label=pip%20downloads&logo=python)](https://pypi.org/project/livermask/)
**livermask** was developed by SINTEF Medical Technology to provide an open tool to accelerate research.
<img src="figures/Segmentation_3DSlicer.PNG" width="70%">
</div>
## Install
```
pip install livermask
```
Alternatively, to install from source do:
```
pip install git+https://github.com/andreped/livermask.git
```
As TensorFlow 2.4 only supports Python 3.6-3.8, so does livermask. Software
is also compatible with Anaconda. However, best way of installing livermask is using `pip`, which
also works for conda environments.
(Optional) To add GPU inference support for liver vessel segmentation (which uses Chainer and CuPy), you need to install [CuPy](https://github.com/cupy/cupy). This can be easily done by adding `cupy-cudaX`, where `X` is the CUDA version you have installed, for instance `cupy-cuda110` for CUDA-11.0:
```
pip install cupy-cuda110
```
Program has been tested using Python 3.7 on Windows, macOS, and Ubuntu Linux 20.04.
## Usage
```
livermask --input path-to-input --output path-to-output
```
| command<img width=10/> | description |
| ------------------- | ------------- |
| `--input` | the full path to the input data. Could be nifti file or directory (if directory is provided as input) |
| `--output` | the full path to the output data. Could be either output name or directory (if directory is provided as input) |
| `--cpu` | to disable the GPU (force computations on CPU only) |
| `--verbose` | to enable verbose |
| `--vessels` | to segment vessels |
| `--extension` | which extension to save output in (default: `.nii`) |
<details open>
<summary>
### Using code directly</summary>
If you wish to use the code directly (not as a CLI and without installing), you can run this command:
```
python -m livermask.livermask --input path-to-input --output path-to-output
```
</details>
<details>
<summary>
### DICOM/NIfTI format</summary>
Pipeline assumes input is in the NIfTI format, and output a binary volume in the same format (.nii or .nii.gz).
DICOM can be converted to NIfTI using the CLI [dcm2niix](https://github.com/rordenlab/dcm2niix), as such:
```
dcm2niix -s y -m y -d 1 "path_to_CT_folder" "output_name"
```
Note that "-d 1" assumed that "path_to_CT_folder" is the folder just before the set of DICOM scans you want to import and convert. This can be removed if you want to convert multiple ones at the same time. It is possible to set "." for "output_name", which in theory should output a file with the same name as the DICOM folder, but that doesn't seem to happen...
</details>
<details>
<summary>
### Troubleshooting</summary>
You might have issues downloading the model when using VPN. If any issues are observed, try to disable VPN and try again.
If the program struggles to install, attempt to install using:
```
pip install --force-reinstall --no-deps git+https://github.com/andreped/livermask.git
```
If you experience issues with numpy after installing CuPy, try reinstalling CuPy with this extension:
```
pip install 'cupy-cuda110>=7.7.0,<8.0.0'
```
</details>
## Applications of livermask
* Pérez de Frutos et al., Learning deep abdominal CT registration through adaptive loss weighting and synthetic data generation, PLOS ONE, 2023,
https://doi.org/10.1371/journal.pone.0282110
* Survarachakan et al., Effects of Enhancement on Deep Learning Based Hepatic Vessel Segmentation, Electronics, https://doi.org/10.3390/electronics10101165
## Acknowledgements
If you found this tool helpful in your research, please, consider citing it:
<pre>
@software{andre_pedersen_2023_7574587,
author = {André Pedersen and Javier Pérez de Frutos},
title = {andreped/livermask: v1.4.1},
month = jan,
year = 2023,
publisher = {Zenodo},
version = {v1.4.1},
doi = {10.5281/zenodo.7574587},
url = {https://doi.org/10.5281/zenodo.7574587}
}
</pre>
Information on how to cite can be found [here](https://zenodo.org/badge/latestdoi/238680374).
The model was trained on the LITS dataset. The dataset is openly accessible and can be downloaded from [here](https://competitions.codalab.org/competitions/17094).
|