File size: 2,412 Bytes
6a57640
 
 
 
1e53020
 
6a57640
 
 
 
 
 
1e53020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a57640
1e53020
 
 
 
 
 
 
 
 
 
 
 
6a57640
1e53020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a57640
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from typing import List
from typing import Type

from langchain.docstore.document import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import VectorStore
from langchain.vectorstores.faiss import FAISS

from knowledge_gpt.core.debug import FakeEmbeddings
from knowledge_gpt.core.debug import FakeVectorStore
from knowledge_gpt.core.parsing import File


class FolderIndex:
    """Index for a collection of files (a folder)"""

    def __init__(self, files: List[File], index: VectorStore):
        self.name: str = "default"
        self.files = files
        self.index: VectorStore = index

    @staticmethod
    def _combine_files(files: List[File]) -> List[Document]:
        """Combines all the documents in a list of files into a single list."""

        all_texts = []
        for file in files:
            for doc in file.docs:
                doc.metadata["file_name"] = file.name
                doc.metadata["file_id"] = file.id
                all_texts.append(doc)

        return all_texts

    @classmethod
    def from_files(cls, files: List[File], embeddings: Embeddings, vector_store: Type[VectorStore]) -> "FolderIndex":
        """Creates an index from files."""

        all_docs = cls._combine_files(files)

        index = vector_store.from_documents(
            documents=all_docs,
            embedding=embeddings,
        )

        return cls(files=files, index=index)


def embed_files(files: List[File], embedding: str, vector_store: str, **kwargs) -> FolderIndex:
    """Embeds a collection of files and stores them in a FolderIndex."""

    supported_embeddings: dict[str, Type[Embeddings]] = {
        "openai": OpenAIEmbeddings,
        "debug": FakeEmbeddings,
    }
    supported_vector_stores: dict[str, Type[VectorStore]] = {
        "faiss": FAISS,
        "debug": FakeVectorStore,
    }

    if embedding in supported_embeddings:
        _embeddings = supported_embeddings[embedding](**kwargs)
    else:
        raise NotImplementedError(f"Embedding {embedding} not supported.")

    if vector_store in supported_vector_stores:
        _vector_store = supported_vector_stores[vector_store]
    else:
        raise NotImplementedError(f"Vector store {vector_store} not supported.")

    return FolderIndex.from_files(files=files, embeddings=_embeddings, vector_store=_vector_store)