File size: 7,845 Bytes
ddc22b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c47dd4
ddc22b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ffd127
ddc22b2
 
8ffd127
 
ddc22b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c47dd4
ddc22b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ffd127
ddc22b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ffd127
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os

import gradio as gr

from .convert import nifti_to_obj
from .css_style import css
from .inference import run_model
from .logger import flush_logs
from .logger import read_logs
from .logger import setup_logger
from .utils import load_ct_to_numpy
from .utils import load_pred_volume_to_numpy

# setup logging
LOGGER = setup_logger()


class WebUI:
    def __init__(
        self,
        model_name: str = None,
        cwd: str = "/home/user/app/",
        share: int = 1,
    ):
        # global states
        self.images = []
        self.pred_images = []

        # @TODO: This should be dynamically set based on chosen volume size
        self.nb_slider_items = 820

        self.model_name = model_name
        self.cwd = cwd
        self.share = share

        self.class_name = "Lymph Nodes"  # default
        self.class_names = {
            "Lymph Nodes": "CT_LymphNodes",
        }

        self.result_names = {
            "Lymph Nodes": "LymphNodes",
        }

        # define widgets not to be rendered immediantly, but later on
        self.slider = gr.Slider(
            minimum=1,
            maximum=self.nb_slider_items,
            value=1,
            step=1,
            label="Which 2D slice to show",
        )
        self.volume_renderer = gr.Model3D(
            clear_color=[0.0, 0.0, 0.0, 0.0],
            label="3D Model",
            show_label=True,
            visible=True,
            elem_id="model-3d",
            camera_position=[90, 180, 768],
        ).style(height=512)

    def set_class_name(self, value):
        LOGGER.info(f"Changed task to: {value}")
        self.class_name = value

    def combine_ct_and_seg(self, img, pred):
        return (img, [(pred, self.class_name)])

    def upload_file(self, file):
        out = file.name
        LOGGER.info(f"File uploaded: {out}")
        return out

    def process(self, mesh_file_name):
        path = mesh_file_name.name
        run_model(
            path,
            model_path=os.path.join(self.cwd, "resources/models/"),
            task=self.class_names[self.class_name],
            name=self.result_names[self.class_name],
        )
        LOGGER.info("Converting prediction NIfTI to OBJ...")
        nifti_to_obj("prediction.nii.gz")

        LOGGER.info("Loading CT to numpy...")
        self.images = load_ct_to_numpy(path)

        LOGGER.info("Loading prediction volume to numpy..")
        self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")

        return "./prediction.obj"

    def get_img_pred_pair(self, k):
        k = int(k)
        out = gr.AnnotatedImage(self.combine_ct_and_seg(self.images[k], self.pred_images[k]), visible=True, elem_id="model-2d",).style(
            color_map={self.class_name: "#ffae00"},
            height=512,
            width=512,
        )
        return out

    def toggle_sidebar(self, state):
        state = not state
        return gr.update(visible=state), state

    def run(self):
        with gr.Blocks(css=css) as demo:
            with gr.Row():
                with gr.Column(visible=True, scale=0.2) as sidebar_left:
                    logs = gr.Textbox(
                        placeholder="\n" * 16,
                        label="Logs",
                        info="Verbose from inference will be displayed below.",
                        lines=38,
                        max_lines=38,
                        autoscroll=True,
                        elem_id="logs",
                        show_copy_button=True,
                        scroll_to_output=False,
                        container=True,
                        line_breaks=True,
                    )
                    demo.load(read_logs, None, logs, every=1)

                with gr.Column():
                    with gr.Row():
                        with gr.Column(scale=0.2, min_width=150):
                            sidebar_state = gr.State(True)

                            btn_toggle_sidebar = gr.Button(
                                "Toggle Sidebar",
                                elem_id="toggle-button",
                            )
                            btn_toggle_sidebar.click(
                                self.toggle_sidebar,
                                [sidebar_state],
                                [sidebar_left, sidebar_state],
                            )

                            btn_clear_logs = gr.Button("Clear logs", elem_id="logs-button")
                            btn_clear_logs.click(flush_logs, [], [])

                        file_output = gr.File(file_count="single", elem_id="upload")
                        file_output.upload(self.upload_file, file_output, file_output)

                        model_selector = gr.Dropdown(
                            list(self.class_names.keys()),
                            label="Task",
                            info="Which structure to segment.",
                            multiselect=False,
                            size="sm",
                        )
                        model_selector.input(
                            fn=lambda x: self.set_class_name(x),
                            inputs=model_selector,
                            outputs=None,
                        )

                        with gr.Column(scale=0.2, min_width=150):
                            run_btn = gr.Button("Run analysis", variant="primary", elem_id="run-button",).style(
                                full_width=False,
                                size="lg",
                            )
                            run_btn.click(
                                fn=lambda x: self.process(x),
                                inputs=file_output,
                                outputs=self.volume_renderer,
                            )

                    with gr.Row():
                        gr.Examples(
                            examples=[
                                os.path.join(self.cwd, "test_thorax_CT.nii.gz"),
                            ],
                            inputs=file_output,
                            outputs=file_output,
                            fn=self.upload_file,
                            cache_examples=True,
                        )

                        gr.Markdown(
                            """
                            **NOTE:** Inference might take several minutes (Lymph nodes: ~8 minutes), see logs to the left. \\
                            The segmentation will be available in the 2D and 3D viewers below when finished.
                            """
                        )

                    with gr.Row():
                        with gr.Box():
                            with gr.Column():
                                # create dummy image to be replaced by loaded images
                                t = gr.AnnotatedImage(visible=True, elem_id="model-2d").style(
                                    color_map={self.class_name: "#ffae00"},
                                    height=512,
                                    width=512,
                                )

                                self.slider.input(
                                    self.get_img_pred_pair,
                                    self.slider,
                                    t,
                                )

                                self.slider.render()

                        with gr.Box():
                            self.volume_renderer.render()

        # sharing app publicly -> share=True:
        # https://gradio.app/sharing-your-app/
        # inference times > 60 seconds -> need queue():
        # https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
        demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=self.share)