File size: 17,830 Bytes
0e7de0a a290524 0e7de0a a290524 0e7de0a a27d55f 0e7de0a 7b8d670 a290524 0e7de0a a290524 0e7de0a a290524 0e7de0a 7b8d670 0e7de0a c292437 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a a290524 7b8d670 a290524 0e7de0a 80a22dd 0e7de0a 80a22dd a290524 0e7de0a 7b8d670 0e7de0a c0d9a8c 0e7de0a a3cbfc7 7b8d670 a3cbfc7 5151a7d c292437 a3cbfc7 a290524 7914847 a290524 7b8d670 c0d9a8c 0e7de0a a290524 0e7de0a 7b8d670 0e7de0a 7b8d670 a290524 7b8d670 0e7de0a 7b8d670 a290524 a3cbfc7 a290524 7b8d670 0e7de0a c292437 0e7de0a a290524 7b8d670 a290524 7b8d670 0e7de0a 7b8d670 0e7de0a f4c45ef 0e7de0a a290524 7b8d670 0e7de0a c7383ff 7b8d670 5b0dbe4 0e7de0a 0978cbc a27d55f 0e7de0a 7b8d670 0e7de0a 7b8d670 0e7de0a c292437 0e7de0a 7b8d670 0e7de0a 5b0dbe4 0e7de0a c292437 c0d9a8c c292437 292287c c292437 7b8d670 c292437 c0d9a8c 4f28aaa 7b8d670 0e7de0a 7b8d670 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import datetime
import os, sys
import shutil
import argparse
import subprocess
import logging
import time
import tensorflow as tf
import numpy as np
import nibabel as nib
from scipy.ndimage import gaussian_filter, zoom
from skimage.measure import regionprops
import SimpleITK as sitk
import ddmr.utils.constants as C
from ddmr.utils.nifti_utils import save_nifti
from ddmr.layers.SpatialTransformer import SpatialTransformer
from ddmr.utils.operators import min_max_norm
from ddmr.utils.misc import resize_displacement_map
from ddmr.utils.model_utils import get_models_path, load_model, get_spatialtransformer_model
from ddmr.utils.logger import LOGGER
from importlib.util import find_spec
def rigidly_align_images(image_1: str, image_2: str) -> nib.Nifti1Image:
"""
Rigidly align the images and resample to the same array size, to the dense displacement map is correct
"""
def resample_to_isotropic(image: sitk.Image) -> sitk.Image:
spacing = image.GetSpacing()
spacing = min(spacing)
resamp_spacing = [spacing] * image.GetDimension()
resamp_size = [int(round(or_size*or_space/spacing)) for or_size, or_space in zip(image.GetSize(), image.GetSpacing())]
return sitk.Resample(image,
resamp_size, sitk.Transform(), sitk.sitkLinear,image.GetOrigin(),
resamp_spacing, image.GetDirection(), 0, image.GetPixelID())
image_1 = sitk.ReadImage(image_1, sitk.sitkFloat32)
image_2 = sitk.ReadImage(image_2, sitk.sitkFloat32)
image_1 = resample_to_isotropic(image_1)
image_2 = resample_to_isotropic(image_2)
rig_reg = sitk.ImageRegistrationMethod()
rig_reg.SetMetricAsMeanSquares()
rig_reg.SetOptimizerAsRegularStepGradientDescent(4.0, 0.01, 200)
rig_reg.SetInitialTransform(sitk.TranslationTransform(image_1.GetDimension()))
rig_reg.SetInterpolator(sitk.sitkLinear)
print('Running rigid registration...')
rig_reg_trf = rig_reg.Execute(image_1, image_2)
print('Rigid registration completed\n----------------------------')
print('Optimizer stop condition: {}'.format(rig_reg.GetOptimizerStopConditionDescription()))
print('Iteration: {}'.format(rig_reg.GetOptimizerIteration()))
print('Metric value: {}'.format(rig_reg.GetMetricValue()))
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(image_1)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(100)
resampler.SetTransform(rig_reg_trf)
image_2 = resampler.Execute(image_2)
# TODO: Build a common image to hold both image_1 and image_2
def pad_images(image_1: nib.Nifti1Image, image_2: nib.Nifti1Image):
"""
Align image_1 and image_2 by the top left corner and pad them to the largest dimensions along the three axes
"""
joint_image_shape = np.maximum(image_1.shape, image_2.shape)
pad_1 = [[0, p] for p in joint_image_shape - image_1.shape]
pad_2 = [[0, p] for p in joint_image_shape - image_2.shape]
image_1_padded = np.pad(image_1.dataobj, pad_1, mode='edge').astype(np.float32)
image_2_padded = np.pad(image_2.dataobj, pad_2, mode='edge').astype(np.float32)
return image_1_padded, image_2_padded
def pad_crop_to_original_shape(crop_image: np.asarray, output_shape: [tuple, np.asarray], top_left_corner: [tuple, np.asarray]):
"""
Pad crop_image so the output image has output_shape with the crop where it originally was found
"""
output_shape = np.asarray(output_shape)
top_left_corner = np.asarray(top_left_corner)
pad = [[c, o - (c + i)] for c, o, i in zip(top_left_corner[:3], output_shape[:3], crop_image.shape[:3])]
if len(crop_image.shape) == 4:
pad += [[0, 0]]
return np.pad(crop_image, pad, mode='constant', constant_values=np.min(crop_image)).astype(crop_image.dtype)
def pad_displacement_map(disp_map: np.ndarray, crop_min: np.ndarray, crop_max: np.ndarray, output_shape: (np.ndarray, list)) -> np.ndarray:
ret_val = disp_map
if np.all([d != i for d, i in zip(disp_map.shape[:3], output_shape)]):
padding = [[crop_min[i], max(0, output_shape[i] - crop_max[i])] for i in range(3)] + [[0, 0]]
ret_val = np.pad(disp_map, padding, mode='constant')
return ret_val
def run_livermask(input_image_path, outputdir, filename: str = 'segmentation') -> np.ndarray:
assert find_spec('livermask'), 'Livermask is not available'
LOGGER.info('Getting parenchyma segmentations...')
shutil.copy2(input_image_path, os.path.join(outputdir, f'{filename}.nii.gz'))
livermask_cmd = "{} -m livermask.livermask --input {} --output {}".format(sys.executable,
input_image_path,
os.path.join(outputdir,
f'{filename}.nii.gz'))
subprocess.run(livermask_cmd)
LOGGER.info('done!')
segmentation_path = os.path.join(outputdir, f'{filename}.nii.gz')
return np.asarray(nib.load(segmentation_path).dataobj, dtype=int)
def debug_save_image(image: (np.ndarray, nib.Nifti1Image), filename: str, outputdir: str, debug: bool = True):
def disp_map_modulus(disp_map, scale: float = None):
disp_map_mod = np.sqrt(np.sum(np.power(disp_map, 2), -1))
if scale:
min_disp = np.min(disp_map_mod)
max_disp = np.max(disp_map_mod)
disp_map_mod = disp_map_mod - min_disp / (max_disp - min_disp)
disp_map_mod *= scale
LOGGER.debug('Scaled displacement map to [0., 1.] range')
return disp_map_mod
if debug:
os.makedirs(os.path.join(outputdir, 'debug'), exist_ok=True)
if image.shape[-1] > 1:
image = disp_map_modulus(image, 1.)
save_nifti(image, os.path.join(outputdir, 'debug', filename+'.nii.gz'), verbose=False)
LOGGER.debug(f'Saved {filename} at {os.path.join(outputdir, filename + ".nii.gz")}')
def get_roi(image_filepath: str,
compute_segmentation: bool,
outputdir: str,
filename_filepath: str = 'segmentation',
segmentation_file: str = None,
debug: bool = False) -> list:
segm = None
if segmentation_file is None and compute_segmentation:
LOGGER.info(f'Computing segmentation using livermask. Only for liver in abdominal CTs')
try:
segm = run_livermask(image_filepath, outputdir, filename_filepath)
LOGGER.info(f'Loaded segmentation using livermask from {os.path.join(outputdir, filename_filepath)}')
except (AssertionError, FileNotFoundError) as er:
LOGGER.warning(er)
LOGGER.warning('No segmentation provided! Using the full volume')
pass
elif segmentation_file is not None:
segm = np.asarray(nib.load(segmentation_file).dataobj, dtype=int)
LOGGER.info(f'Loaded fixed segmentation from {segmentation_file}')
else:
LOGGER.warning('No segmentation provided! Using the full volume')
if segm is not None:
segm[segm > 0] = 1
ret_val = regionprops(segm)[0].bbox
debug_save_image(segm, f'img_1_{filename_filepath}', outputdir, debug)
else:
ret_val = [0, 0, 0] + list(nib.load(image_filepath).shape[:3])
LOGGER.debug(f'ROI found at coordinates {ret_val}')
return ret_val
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--fixed', type=str, help='Path to fixed image file (NIfTI)')
parser.add_argument('-m', '--moving', type=str, help='Path to moving segmentation image file (NIfTI)', default=None)
parser.add_argument('-fs', '--fixedsegm', type=str, help='Path to fixed image segmentation file(NIfTI)',
default=None)
parser.add_argument('-ms', '--movingsegm', type=str, help='Path to moving image file (NIfTI)')
parser.add_argument('-o', '--outputdir', type=str, help='Output directory', default='./Registration_output')
parser.add_argument('-a', '--anatomy', type=str, help='Anatomical structure: liver (L) (Default) or brain (B)',
default='L')
parser.add_argument('-s', '--make-segmentation', action='store_true', help='Try to create a segmentation for liver in CT images', default=False)
parser.add_argument('--gpu', type=int,
help='In case of multi-GPU systems, limits the execution to the defined GPU number',
default=None)
parser.add_argument('--model', type=str, help='Which model to use: BL-N, BL-S, BL-NS, SG-ND, SG-NSD, UW-NSD, UW-NSDH',
default='UW-NSD')
parser.add_argument('-d', '--debug', action='store_true', help='Produce additional debug information', default=False)
parser.add_argument('-c', '--clear-outputdir', action='store_true', help='Clear output folder if this has content', default=False)
parser.add_argument('--original-resolution', action='store_true',
help='Re-scale the displacement map to the original resolution and apply it to the original moving image. WARNING: longer processing time.',
default=False)
parser.add_argument('--save-displacement-map', action='store_true', help='Save the displacement map. An NPZ file will be created.',
default=False)
args = parser.parse_args()
assert os.path.exists(args.fixed), 'Fixed image not found'
assert os.path.exists(args.moving), 'Moving image not found'
assert args.model in C.MODEL_TYPES.keys(), 'Invalid model type'
assert args.anatomy in C.ANATOMIES.keys(), 'Invalid anatomy option'
os.makedirs(args.outputdir, exist_ok=True)
log_format = '%(asctime)s [%(levelname)s]:\t%(message)s'
logging.basicConfig(filename=os.path.join(args.outputdir, 'log.log'), filemode='w',
format=log_format, datefmt='%Y-%m-%d %H:%M:%S')
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(logging.Formatter(log_format, datefmt='%Y-%m-%d %H:%M:%S'))
LOGGER.addHandler(stdout_handler)
if isinstance(args.gpu, int):
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi'
LOGGER.setLevel('INFO')
if args.debug:
LOGGER.setLevel('DEBUG')
LOGGER.debug('DEBUG MODE ENABLED')
if args.original_resolution:
LOGGER.info('The results will be rescaled back to the original image resolution. '
'Expect longer post-processing times.')
else:
LOGGER.info(f'The results will NOT be rescaled. Output shape will be {C.IMG_SHAPE[:3]}.')
# Load the file and preprocess it
LOGGER.info('Loading image files')
fixed_image_or = nib.load(args.fixed)
moving_image_or = nib.load(args.moving)
moving_image_header = moving_image_or.header.copy()
image_shape_or = np.asarray(fixed_image_or.shape)
fixed_image_or, moving_image_or = pad_images(fixed_image_or, moving_image_or)
fixed_image_or = fixed_image_or[..., np.newaxis] # add channel dim
moving_image_or = moving_image_or[..., np.newaxis] # add channel dim
debug_save_image(fixed_image_or, 'img_0_loaded_fix_image', args.outputdir, args.debug)
debug_save_image(moving_image_or, 'img_0_loaded_moving_image', args.outputdir, args.debug)
# TF stuff
LOGGER.info('Setting up configuration')
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
config.gpu_options.allow_growth = True
config.log_device_placement = False ## to log device placement (on which device the operation ran)
config.allow_soft_placement = True
sess = tf.compat.v1.Session(config=config)
tf.compat.v1.keras.backend.set_session(sess)
# Preprocess data
# 1. Run Livermask to get the mask around the liver in both the fixed and moving image
LOGGER.info('Getting ROI')
fixed_segm_bbox = get_roi(args.fixed, args.make_segmentation, args.outputdir,
'fixed_segmentation', args.fixedsegm, args.debug)
moving_segm_bbox = get_roi(args.moving, args.make_segmentation, args.outputdir,
'moving_segmentation', args.movingsegm, args.debug)
crop_min = np.amin(np.vstack([fixed_segm_bbox[:3], moving_segm_bbox[:3]]), axis=0)
crop_max = np.amax(np.vstack([fixed_segm_bbox[3:], moving_segm_bbox[3:]]), axis=0)
# 2.2 Crop the fixed and moving images using such boxes
fixed_image = fixed_image_or[crop_min[0]: crop_max[0],
crop_min[1]: crop_max[1],
crop_min[2]: crop_max[2], ...]
debug_save_image(fixed_image, 'img_2_cropped_fixed_image', args.outputdir, args.debug)
moving_image = moving_image_or[crop_min[0]: crop_max[0],
crop_min[1]: crop_max[1],
crop_min[2]: crop_max[2], ...]
debug_save_image(moving_image, 'img_2_cropped_moving_image', args.outputdir, args.debug)
image_shape_crop = fixed_image.shape
# 2.3 Resize the images to the expected input size
zoom_factors = np.asarray(C.IMG_SHAPE) / np.asarray(image_shape_crop)
fixed_image = zoom(fixed_image, zoom_factors)
moving_image = zoom(moving_image, zoom_factors)
fixed_image = min_max_norm(fixed_image)
moving_image = min_max_norm(moving_image)
debug_save_image(fixed_image, 'img_3_preproc_fixed_image', args.outputdir, args.debug)
debug_save_image(moving_image, 'img_3_preproc_moving_image', args.outputdir, args.debug)
# 3. Build the whole graph
LOGGER.info('Building TF graph')
LOGGER.info(f'Getting model: {"Brain" if args.anatomy == "B" else "Liver"} -> {args.model}')
MODEL_FILE = get_models_path(args.anatomy, args.model, os.getcwd()) # MODELS_FILE[args.anatomy][args.model]
ST_MODEL_FILE = get_spatialtransformer_model()
network, registration_model = load_model(MODEL_FILE, False, True)
spatialtransformer_model = tf.keras.models.load_model(ST_MODEL_FILE, custom_objects={'SpatialTransformer': SpatialTransformer})
LOGGER.info('Computing registration')
with sess.as_default():
if args.debug:
registration_model.summary(line_length=C.SUMMARY_LINE_LENGTH)
LOGGER.info('Computing displacement map...')
time_disp_map_start = time.time()
p, disp_map = network.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
time_disp_map_end = time.time()
LOGGER.info(f'\t... done ({time_disp_map_end - time_disp_map_start})')
disp_map = np.squeeze(disp_map)
debug_save_image(np.squeeze(disp_map), 'disp_map_0_raw', args.outputdir, args.debug)
debug_save_image(p[0, ...], 'img_4_net_pred_image', args.outputdir, args.debug)
LOGGER.info('Applying displacement map...')
time_pred_img_start = time.time()
pred_image = spatialtransformer_model.predict([moving_image[np.newaxis, ...], disp_map[np.newaxis, ...]])
time_pred_img_end = time.time()
LOGGER.info(f'\t... done ({time_pred_img_end - time_pred_img_start} s)')
pred_image = pred_image[0, ...]
if args.original_resolution:
LOGGER.info('Scaling predicted image...')
moving_image = moving_image_or
fixed_image = fixed_image_or
# disp_map = disp_map_or
pred_image = zoom(pred_image, 1 / zoom_factors)
pred_image = pad_crop_to_original_shape(pred_image, fixed_image_or.shape, crop_min)
pred_image = np.squeeze(pred_image, axis=-1)
LOGGER.info('Done...')
if args.original_resolution:
save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz'), header=moving_image_header)
else:
save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz'))
save_nifti(fixed_image, os.path.join(args.outputdir, 'fixed_image.nii.gz'))
save_nifti(moving_image, os.path.join(args.outputdir, 'moving_image.nii.gz'))
if args.save_displacement_map or args.debug:
if args.original_resolution:
# Up sample the displacement map to the full res
LOGGER.info('Scaling displacement map...')
trf = np.eye(4)
np.fill_diagonal(trf, 1 / zoom_factors)
disp_map = resize_displacement_map(disp_map, None, trf, moving_image_header.get_zooms())
debug_save_image(disp_map, 'disp_map_1_upsampled', args.outputdir, args.debug)
disp_map = pad_displacement_map(disp_map, crop_min, crop_max, image_shape_or)
debug_save_image(np.squeeze(disp_map), 'disp_map_2_padded', args.outputdir, args.debug)
disp_map = gaussian_filter(disp_map, 5)
debug_save_image(np.squeeze(disp_map), 'disp_map_3_smoothed', args.outputdir, args.debug)
LOGGER.info('\t... done')
if args.debug:
np.savez_compressed(os.path.join(args.outputdir, 'displacement_map.npz'), disp_map)
else:
np.savez_compressed(os.path.join(os.path.join(args.outputdir, 'debug'), 'displacement_map.npz'), disp_map)
LOGGER.info(f'Predicted image and displacement map saved in: '.format(args.outputdir))
LOGGER.info(f'Displacement map prediction time: {time_disp_map_end - time_disp_map_start} s')
LOGGER.info(f'Predicted image time: {time_pred_img_end - time_pred_img_start} s')
del registration_model
LOGGER.info('Done')
if __name__ == '__main__':
main()
|