File size: 35,464 Bytes
b10768a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
import sys, os
import numpy as np
import nibabel as nib
from scipy import ndimage as ndi
from scipy.signal import convolve
from numpy.linalg import norm
import networkx as nx
import logging
import traceback
import timeit
import time
import math
from ast import literal_eval as make_tuple
from skimage.measure import label
import subprocess
import platform
import glob
def loadVolume(volumeFolderPath, volumeName):
"""
Load nifti files (*.nii or *.nii.gz).
Parameters
----------
volumeFolderPath : str
Folder of the volume file.
volumeName : str
Name of the volume file.
Returns
-------
volume : ndarray
Volume data in the form of numpy ndarray.
affine : ndarray
Associated affine transformation matrix in the form of numpy ndarray.
"""
volumeFilePath = os.path.join(volumeFolderPath, volumeName)
volumeImg = nib.load(volumeFilePath)
volume = volumeImg.get_data()
shape = volume.shape
affine = volumeImg.affine
print('Volume loaded from {} with shape = {}.'.format(volumeFilePath, shape))
return volume, affine
def saveVolume(volume, affine, path, astype=None):
"""
Save the given volume to the specified location in specified data type.
Parameters
----------
volume : ndarray
Volume data to be saved.
affine : ndarray
The affine transformation matrix associated with the volume.
path : str
The absolute path where the volume is going to be saved.
astype : numpy dtype, optional
The desired data type of the volume data.
"""
if astype is None:
astype = np.uint8
nib.save(nib.Nifti1Image(volume.astype(astype), affine), path)
print('Volume saved to {} as type {}.'.format(path, astype))
def labelVolume(volume, minSize=1, maxHop=3):
"""
Partition the volume into several connected components and attach labels.
Parameters
----------
volume : ndarray
Volume to be partitioned.
minSize : int, optional
The connected component that is less than this size will be disgarded.
maxHop : int, optional
Controls how neighboring voxels are defined. See `label` doc for details.
Returns
-------
labeled : ndarray
The partitioned and labeled volume. Each connected component has a label (a positive integer) and the background
is labeled as 0.
labelResult : list
In the form of [[label1, size1], [label2, size2], ...]
"""
labeled, maxNum = label(volume, return_num=True, connectivity=maxHop)
counts = np.bincount(labeled.ravel())
countLoc = np.nonzero(counts)[0]
sizeList = counts[countLoc]
labelResult = list(zip(countLoc[sizeList >= minSize], sizeList[sizeList >= minSize]))
# print(labelResult)
# print('Total segments: {}'.format(np.count_nonzero(sizeList >= minSize)))
return labeled, labelResult
def analyze(vesselVolumeMask, baseFolder):
"""
Main function to provoke the skeletonization process. Note that here I am using the docker version of the code. If
you have already downloaded the original C++ code and successfully compiled it, then you can run that compiled code
instead of this one.
"""
vesselVolumeMask = vesselVolumeMask.astype(np.uint8)
vesselVolumeMask[vesselVolumeMask != 0] = 1
vesselVolumeMask = np.swapaxes(vesselVolumeMask, 0, 2)
shape = vesselVolumeMask.shape
vesselVolumeMaskLabeled, vesselVolumeMaskLabelResult = labelVolume(vesselVolumeMask, minSize=1)
directory = os.path.join(baseFolder, 'skeletonizationResult')
if not os.path.exists(directory):
os.makedirs(directory)
print('Directory {} created.'.format(directory))
vesselVolumeMaskLabelInfoFilename = 'vesselVolumeMaskLabelInfo.npz'
vesselVolumeMaskLabelInfoFilePath = os.path.join(directory, vesselVolumeMaskLabelInfoFilename)
np.savez_compressed(vesselVolumeMaskLabelInfoFilePath, vesselVolumeMaskLabeled=vesselVolumeMaskLabeled,
vesselVolumeMaskLabelResult=vesselVolumeMaskLabelResult)
print('{} saved to {}.'.format(vesselVolumeMaskLabelInfoFilename, vesselVolumeMaskLabelInfoFilePath))
# directory2 = directory + 'labelNum=' + str(labelNum) + '/'
# if not os.path.exists(directory2):
# os.makedirs(directory2)
# with open(directory2 + 'BB.txt', 'w') as f1:
# f1.write('1\n')
# f1.write('{} {} {}\n'.format(0, 0, 0))
# f1.write('{} {} {}'.format(*shape))
# '''
BBFilePath = os.path.join(directory, 'BB.txt')
f1 = open(BBFilePath, 'w')
f1.write('1\n')
f1.write('{} {} {}\n'.format(0, 0, 0))
f1.write('{} {} {}'.format(*shape))
f1.close()
vesselCoords = np.array(np.where(vesselVolumeMask)).T
xyzFilePath = os.path.join(directory, 'xyz.txt')
np.savetxt(xyzFilePath, vesselCoords, fmt='%1u')
f2 = open(xyzFilePath, "r")
contents = f2.readlines()
f2.close()
contents.insert(0, '{}\n'.format(len(vesselCoords)))
f2 = open(xyzFilePath, "w")
contents = "".join(contents)
f2.write(contents)
f2.close()
# '''
# '''
currentPlatform = platform.system()
print('Current platform is {}.'.format(currentPlatform))
if currentPlatform == 'Windows':
cmd = '"C:/Program Files/Docker/Docker/Resources/bin/docker.exe" run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-medeiros-2018-docker'
elif currentPlatform == 'Darwin':
cmd = 'docker run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-nih-aug2018-docker2'
elif currentPlatform == 'Linux':
cmd = '/usr/local/bin/docker run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-medeiros-2018-docker'
cmd = 'sudo docker run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-medeiros-2018-docker'
cmd = 'sudo docker run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-nih-aug2018-docker2'
print('cmd={}'.format(cmd))
subprocess.call(cmd, shell=True)
# '''
def combineSkeletonSegments(skeletonSegmentFolderPath):
"""
Collect and combine the results from the skeletonization.
Parameters
----------
skeletonSegmentFolderPath : str
The folder that contains the segments information (result_segments_xyz*.txt).
Returns
-------
segmentList : list
A list containing the segment information. Each sublist represents a segment and each element in the sublist
represents a centerpoint coordinates.
"""
segmentList = []
files = glob.glob(os.path.join(skeletonSegmentFolderPath, 'result_segments_xyz*.txt'))
for segmentFile in files:
result = readSegmentFile(segmentFile)
segmentList += result
return segmentList
def readSegmentFile(segmentFile):
"""
Parse the segment files (result_segments_xyz*.txt) and return segments information in a list.
Parameters
----------
segmentFile : str
Path to the segment file.
Returns
-------
segmentList : list
A list containing the segment information. Each sublist represents a segment and each element in the sublist
represents a centerpoint coordinates.
"""
isFirstLine = True
isSegmentLength = True
segmentList = []
with open(segmentFile) as f:
for line in f:
if isFirstLine:
numOfSegments = int(line)
isFirstLine = False
else:
if isSegmentLength:
segmentLength = int(line)
isSegmentLength = False
segmentCounter = 1
segment = []
else:
if segmentCounter <= segmentLength:
voxel = tuple([int(x) for x in line.split(' ')])
segment.append(voxel[::-1])
segmentCounter += 1
else:
segmentCounter += 1
isSegmentLength = True
segmentList.append(segment)
assert (len(segment) == segmentLength)
return segmentList
# def drawSegments(segmentList):
# pass
def processSegments(segmentList, shape):
"""
Re-partition the segments so that each segment is a simple branch, i.e., it does not contain bifurcation point
unless at the two ends.
Note that this function might be replaced by another more concise function `getSegmentList`.
Parameters
----------
segmentList : list
A list containing the segment information. Each sublist represents a segment and each element in the sublist
represents a centerpoint coordinates.
shape : tuple
Shape of the vessel volume (used for ploting).
Returns
-------
G : NetworkX graph
A graph in which each node represents a centerpoint and each edge represents a portion of a vessel branch.
segmentList : list
A list containing the segment information. Each sublist represents a segment and each element in the sublist
represents a centerpoint coordinates.
errorSegments : list
A list that contains segments that cannot be fixed.
"""
## Import pyqtgraph ##
from pyqtgraph.Qt import QtCore, QtGui
import pyqtgraph as pg
import pyqtgraph.opengl as gl
## Init ##
app = pg.QtGui.QApplication([])
w = gl.GLViewWidget()
w.opts['distance'] = 800
w.setGeometry(0, 110, 1600, 900)
offset = np.array(shape) / (-2.0)
G = nx.Graph()
colorList = [pg.glColor('r'), pg.glColor('g'), pg.glColor('b'), pg.glColor('c'), pg.glColor('m'), pg.glColor('y')]
colorPointer = 0
skeleton = np.full(shape, 0)
for segment in segmentList:
# G.add_path(list(map(tuple, segment)))
G.add_path(segment)
segmentCoords = np.array(segment)
skeleton[tuple(segmentCoords.T)] = 1
# segmentCoordsView = segmentCoords + offset
# aa = gl.GLLinePlotItem(pos=segmentCoordsView, color=colorList[colorPointer], width=3)
# w.addItem(aa)
# colorPointer = colorPointer + 1 if colorPointer < len(colorList) - 1 else 0
# skeletonCoords = np.array(np.where(skeleton)).T
# skeletonCoordsView = (skeletonCoords + offset) * affineTransform
# aa = gl.GLScatterPlotItem(pos=skeletonCoordsView, size=5)
# w.addItem(aa)
# w.show()
voxelDegrees = np.array([v for _, v in G.degree(G.nodes())])
maxVoxelDegree = np.amax(voxelDegrees)
voxelDegreesZippedResult = list(zip(np.arange(maxVoxelDegree + 1), np.bincount(voxelDegrees)))
print('Voxel degree distribution is \n{}'.format(voxelDegreesZippedResult))
print('Number of cycles is {}'.format(len(nx.cycle_basis(G))))
# Remove duplicate segments
keepList = np.full((len(segmentList),), True)
duplicateCounter = 0
for idx, seg in enumerate(segmentList):
for idx2, seg2 in enumerate(segmentList[idx + 1:]):
if seg == seg2 or seg == seg2[::-1]:
keepList[idx + idx2] = False
duplicateCounter += 1
segmentList = [seg for idx, seg in enumerate(segmentList) if keepList[idx]]
print('{} duplicate segments removed!'.format(duplicateCounter))
# Cut segments into sub-pieces if there are bifurcation points in the middle
extraSegments = []
keepList = np.full((len(segmentList),), True)
for idx, segment in enumerate(segmentList):
voxelDegrees = np.array([v for _, v in G.degree(segment)])
if len(voxelDegrees) >= 3:
if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2 or (not np.all(voxelDegrees[1:-1] == 2)):
keepList[idx] = False
locs = np.nonzero(voxelDegrees != 2)[0]
if voxelDegrees[0] == 2:
locs = np.hstack((0, locs))
if voxelDegrees[-1] == 2:
locs = np.hstack((locs, len(voxelDegrees)))
newSegments = []
for ii in range(len(locs) - 1):
newSegments.append(segment[locs[ii]:(locs[ii + 1] + 1)])
extraSegments += newSegments
segmentList = [seg for idx, seg in enumerate(segmentList) if keepList[idx]]
segmentList += extraSegments
# Remove duplicate segments again
keepList = np.full((len(segmentList),), True)
duplicateCounter = 0
for idx, seg in enumerate(segmentList):
for idx2, seg2 in enumerate(segmentList[idx + 1:]):
if seg == seg2 or seg == seg2[::-1]:
keepList[idx + idx2] = False
duplicateCounter += 1
segmentList = [seg for idx, seg in enumerate(segmentList) if keepList[idx]]
print('{} duplicate segments removed in the second stage!'.format(duplicateCounter))
# Remove segment if it is completely contained in another segment
# keepList = np.full((len(segmentList),), True)
# sublistCounter = 0
# for idx, seg in enumerate(segmentList):
# for idx2, seg2 in enumerate(segmentList[idx + 1:]):
# if contains(seg, seg2):
# keepList[idx] = False
# sublistCounter += 1
# elif contains(seg2, seg):
# keepList[idx + idx2] = False
# sublistCounter += 1
# segmentList = [seg for idx, seg in enumerate(segmentList) if keepList[idx]]
# print('{} sublist segments removed!'.format(sublistCounter))
# Treat the segment if either end is not correct
hasInvalidSegments = False
for idx, segment in enumerate(segmentList):
voxelDegrees = np.array([v for _, v in G.degree(segment)])
if len(voxelDegrees) == 2:
if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2:
# print('Degrees on either end is 2: {}'.format(voxelDegrees))
hasInvalidSegments = True
elif len(voxelDegrees) > 2:
if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2 or np.any(voxelDegrees[1:-1] != 2):
# print('Degrees not correct: {}'.format(voxelDegrees))
hasInvalidSegments = True
if not hasInvalidSegments:
drawSegments(segmentList, shape)
print('No errors!')
errorSegments = []
return G, segmentList, errorSegments
iterCounter = 1
while hasInvalidSegments:
print('\n\nIter={}'.format(iterCounter))
keepList = np.full((len(segmentList),), True)
extraSegments = []
for idx, segment in enumerate(segmentList):
if keepList[idx]:
voxelDegrees = np.array([v for _, v in G.degree(segment)])
if voxelDegrees[0] == 2 and voxelDegrees[-1] == 2:
print('Both end have 2 neighbours')
elif voxelDegrees[0] == 2 or voxelDegrees[-1] == 2:
# print('Degrees on either end is 2: {}'.format(voxelDegrees))
# pass
# segmentCoords = np.array(segment)
if voxelDegrees[0] == 2:
otherSegmentInfo = [(idx2, seg) for idx2, seg in enumerate(segmentList) if
(seg[0] == segment[0] or seg[-1] == segment[0]) and keepList[
idx2] and idx != idx2]
if len(otherSegmentInfo) != 0:
if len(otherSegmentInfo) > 1:
# print(contains(segment, otherSegmentInfo[0][1]), contains(otherSegmentInfo[1][1], segment))
otherSegmentInfoTemp = []
for idx2, seg in otherSegmentInfo:
if contains(segment, seg) or contains(segment[::-1], seg):
keepList[idx] = False
continue
elif contains(seg, segment) or contains(seg[::-1], segment):
keepList[idx2] = False
otherSegmentInfoTemp.append((idx2, seg))
otherSegmentInfo = otherSegmentInfoTemp
# otherSegmentInfo = [segInfo for segInfo in otherSegmentInfo if not (contains(segment, segInfo[1]) or contains(segInfo[1], segment))]
if len(otherSegmentInfo) > 1:
print('More than one other segments found!')
print('Current segment ({}) is {} ({})'.format(idx, segment, voxelDegrees))
for otherSegmentIdx, otherSegment in otherSegmentInfo:
otherSegmentVoxelDegrees = np.array([v for _, v in G.degree(otherSegment)])
print('Idx = {}: {} ({})'.format(otherSegmentIdx, otherSegment,
otherSegmentVoxelDegrees))
elif len(otherSegmentInfo) == 1:
otherSegmentIdx, otherSegment = otherSegmentInfo[0]
else:
print('No valid other segments found!')
continue
else:
otherSegmentIdx, otherSegment = otherSegmentInfo[0]
if contains(segment, otherSegment) or contains(segment[::-1], otherSegment):
keepList[idx] = False
continue
elif contains(otherSegment, segment) or contains(otherSegment[::-1], segment):
keepList[otherSegmentIdx] = False
continue
newSegment = otherSegment + segment[1:] if otherSegment[-1] == segment[0] else otherSegment[
::-1] + segment[
1:]
if not validateSegment(G, newSegment):
newSegmentVoxelDegrees = np.array([v for _, v in G.degree(newSegment)])
print('Old degree is {} () and new degree is {} ()'.format(voxelDegrees,
newSegmentVoxelDegrees))
else:
print('Two segments ({} and {}) merged together!'.format(idx, otherSegmentIdx))
extraSegments.append(newSegment)
keepList[idx] = False
keepList[otherSegmentIdx] = False
else:
print(
'Could not find other segments for segment({}) {} with degrees {}'.format(idx, segment,
voxelDegrees))
possibleSegmentsInfo = [(idx2, seg) for idx2, seg in enumerate(segmentList) if
(seg[0] == segment[0] or seg[-1] == segment[0]) and idx != idx2]
print('Possible segments: {}'.format(len(possibleSegmentsInfo)))
elif voxelDegrees[-1] == 2:
otherSegmentInfo = [(idx2, seg) for idx2, seg in enumerate(segmentList) if
(seg[0] == segment[-1] or seg[-1] == segment[-1]) and keepList[
idx2] and idx != idx2]
if len(otherSegmentInfo) != 0:
if len(otherSegmentInfo) > 1:
# print(contains(segment, otherSegmentInfo[0][1]), contains(otherSegmentInfo[1][1], segment))
otherSegmentInfoTemp = []
for idx2, seg in otherSegmentInfo:
if contains(segment, seg) or contains(segment[::-1], seg):
keepList[idx] = False
continue
elif contains(seg, segment) or contains(seg[::-1], segment):
keepList[idx2] = False
otherSegmentInfoTemp.append((idx2, seg))
otherSegmentInfo = otherSegmentInfoTemp
# otherSegmentInfo = [segInfo for segInfo in otherSegmentInfo if not (contains(segment, segInfo[1]) or contains(segInfo[1], segment))]
if len(otherSegmentInfo) > 1:
print('More than one other segments found!')
print('Current segment ({}) is {} ({})'.format(idx, segment, voxelDegrees))
for otherSegmentIdx, otherSegment in otherSegmentInfo:
otherSegmentVoxelDegrees = np.array([v for _, v in G.degree(otherSegment)])
print('Idx = {}: {} ({})'.format(otherSegmentIdx, otherSegment,
otherSegmentVoxelDegrees))
elif len(otherSegmentInfo) == 1:
otherSegmentIdx, otherSegment = otherSegmentInfo[0]
else:
print('No valid other segments found!')
continue
else:
otherSegmentIdx, otherSegment = otherSegmentInfo[0]
if contains(segment, otherSegment) or contains(segment[::-1], otherSegment):
keepList[idx] = False
continue
elif contains(otherSegment, segment) or contains(otherSegment[::-1], segment):
keepList[otherSegmentIdx] = False
continue
newSegment = segment[:-1] + otherSegment if otherSegment[0] == segment[-1] else segment[
:-1] + otherSegment[
::-1]
if not validateSegment(G, newSegment):
newSegmentVoxelDegrees = np.array([v for _, v in G.degree(newSegment)])
print('Old degree is {} () and new degree is {} ()'.format(voxelDegrees,
newSegmentVoxelDegrees))
else:
print('Two segments ({} and {}) merged together!'.format(idx, otherSegmentIdx))
extraSegments.append(newSegment)
keepList[idx] = False
keepList[otherSegmentIdx] = False
else:
print(
'Could not find other segments for segment({}) {} with degrees {}'.format(idx, segment,
voxelDegrees))
possibleSegmentsInfo = [(idx2, seg) for idx2, seg in enumerate(segmentList) if
(seg[0] == segment[-1] or seg[-1] == segment[-1]) and idx != idx2]
print('Possible segments: {}'.format(len(possibleSegmentsInfo)))
segmentList = [segment for idx, segment in enumerate(segmentList) if keepList[idx]]
segmentList += extraSegments
hasInvalidSegments = False
errorSegments = []
for idx, segment in enumerate(segmentList):
voxelDegrees = np.array([v for _, v in G.degree(segment)])
if len(voxelDegrees) == 2:
if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2:
print('Degrees on either end is 2: {}'.format(voxelDegrees))
hasInvalidSegments = True
errorSegments.append(segment)
elif len(voxelDegrees) > 2:
if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2 or np.any(voxelDegrees[1:-1] != 2):
print('Degrees not correct: {}'.format(voxelDegrees))
hasInvalidSegments = True
errorSegments.append(segment)
print('hasInvalidSegments = {}'.format(hasInvalidSegments))
iterCounter += 1
if len(extraSegments) == 0:
hasInvalidSegments = False
print('While loop aborted because there is no change in segments!')
for errorSegment in errorSegments:
segmentList.remove(errorSegment)
# np.savez_compressed(directory + 'segmentList.npz', segmentList=segmentList)
# if partIdx != 10:
# nib.save(nib.Nifti1Image(skeleton.astype(np.int16), vesselImg.affine), directory + skeletonNamePartial + str(partIdx) + '.nii.gz')
# else:
# nib.save(nib.Nifti1Image(skeleton.astype(np.int16), vesselImg.affine), directory + skeletonNameTotal + '.nii.gz')
# nx.write_graphml(G, directory + 'graphRepresentation.graphml')
# drawAbstractGraph(offset, segmentList)
# drawAbstractGraph(offset, errorSegments)
print(errorSegments)
return G, segmentList, errorSegments
def getSegmentList(G, nodeInfoDict):
"""
Generate segmentList from graph and nodeInfoDict.
Parameters
----------
G : NetworkX graph
The graph representation of the network.
nodeInfoDict : dict
A dictionary containing the information about nodes.
Returns
-------
segmentList : list
A list of segments in which each segment is a simple branch.
"""
startNodeIDList = [nodeID for nodeID in nodeInfoDict.keys() if nodeInfoDict[nodeID]['parentNodeID'] == -1]
print('startNodeIDList = {}'.format(startNodeIDList))
segmentList = []
for startNodeID in startNodeIDList:
segmentList = getSegmentListDetail(G, nodeInfoDict, segmentList, startNodeID)
print('There are {} segments in segmentList'.format(len(segmentList)))
print(segmentList)
return segmentList
def getSegmentListDetail(G, nodeInfoDict, segmentList, startNodeID):
"""
Implementation of `getSegmentList`. Use DFS to traverse all the segments.
Parameters
----------
G : NetworkX graph
The graph representation of the network.
nodeInfoDict : dict
A dictionary containing the information about nodes.
segmentList : list
A list of segments in which each segment is a simple branch.
startNodeID : int
The index of the start point of a segment.
Returns
-------
segmentList : list
A list of segments in which each segment is a simple branch.
"""
neighborNodeIDList = [nodeID for nodeID in list(G[startNodeID].keys()) if
'visited' not in G[startNodeID][nodeID]] # use adjacency dict to find neighbors
newSegmentList = []
for neighborNodeID in neighborNodeIDList:
newSegment = [startNodeID, neighborNodeID]
G[startNodeID][neighborNodeID]['visited'] = True
currentNodeID = neighborNodeID
while G.degree(currentNodeID) == 2:
newNodeID = [nodeID for nodeID in G[currentNodeID].keys() if 'visited' not in G[currentNodeID][nodeID]][0]
G[currentNodeID][newNodeID]['visited'] = True
newSegment.append(newNodeID)
currentNodeID = newNodeID
newSegmentList.append(newSegment)
segmentList.append(newSegment)
segmentList = getSegmentListDetail(G, nodeInfoDict, segmentList, currentNodeID)
return segmentList
def sublist(ls1, ls2):
'''
>>> sublist([], [1,2,3])
True
>>> sublist([1,2,3,4], [2,5,3])
True
>>> sublist([1,2,3,4], [0,3,2])
False
>>> sublist([1,2,3,4], [1,2,5,6,7,8,5,76,4,3])
False
'''
def get_all_in(one, another):
for element in one:
if element in another:
yield element
for x1, x2 in zip(get_all_in(ls1, ls2), get_all_in(ls2, ls1)):
if x1 != x2:
return False
return True
def contains(lst1, lst2):
lst1, lst2 = (lst2, lst1) if len(lst1) > len(lst2) else (lst1, lst2)
if lst1[0] in lst2:
startLoc = lst2.index(lst1[0])
else:
return False
if lst1[-1] in lst2:
endLoc = lst2.index(lst1[-1])
else:
return False
if startLoc < endLoc:
if lst1 == lst2[startLoc:(endLoc + 1)]:
return True
else:
return False
else:
if lst1 == lst2[endLoc:(startLoc + 1)][::-1]:
return True
else:
return False
def validateSegment(G, segment):
"""
Check whether a segment is a simple branch.
Parameters
----------
G : NetworkX graph
A graph in which each node represents a centerpoint and each edge represents a portion of a vessel branch.
segment : list
A list containing the coordinates of the centerpoints of a segment.
Returns
-------
result : bool
If True, the segment is a simple branch.
"""
voxelDegrees = np.array([v for _, v in G.degree(segment)])
if voxelDegrees[0] != 2 and voxelDegrees[-1] != 2:
if len(voxelDegrees) == 2:
result = True
elif len(voxelDegrees) > 2:
if np.all(voxelDegrees[1:-1] == 2):
result = True
else:
result = False
else:
print('Error! Segment with length 1 found!')
result = False
else:
result = False
return result
def drawSegments(segmentList, shape):
"""
Plot all the segments in `segmentList`. Try to assign different colors to the segments connected to the same node.
Parameters
----------
segmentList : list
A list containing the segment information. Each sublist represents a segment and each element in the sublist
represents a centerpoint coordinates.
shape : tuple
Shape of the vessel volume (used for ploting).
"""
## Import pyqtgraph ##
from pyqtgraph.Qt import QtCore, QtGui
import pyqtgraph as pg
import pyqtgraph.opengl as gl
## Init ##
app = pg.QtGui.QApplication([])
w = gl.GLViewWidget()
w.opts['distance'] = 800
w.setGeometry(0, 110, 1600, 900)
offset = np.array(shape) / (-2.0)
colorList = [pg.glColor('r'), pg.glColor('g'), pg.glColor('b'), pg.glColor('c'), pg.glColor('m'), pg.glColor('y')]
colorNames = ['Red', 'Green', 'Blue', 'Cyan', 'Magneta', 'Yellow']
numOfColors = len(colorList)
nodeColorDict = {}
for segment in segmentList:
startVoxel = segment[0]
endVoxel = segment[-1]
if startVoxel in nodeColorDict and endVoxel in nodeColorDict: # and endVoxel in [voxel for voxel, _ in nodeColorDict[startVoxel]]:
nodeColorDict[startVoxel].append([endVoxel, -1])
nodeColorDict[endVoxel].append([startVoxel, -1])
else:
if startVoxel not in nodeColorDict:
nodeColorDict[startVoxel] = [[endVoxel, -1]]
else:
nodeColorDict[startVoxel].append([endVoxel, -1])
if endVoxel not in nodeColorDict:
nodeColorDict[endVoxel] = [[startVoxel, -1]]
else:
nodeColorDict[endVoxel].append([startVoxel, -1])
existingColorsInStart = [colorCode for _, colorCode in nodeColorDict[startVoxel]]
existingColorsInEnd = [colorCode for _, colorCode in nodeColorDict[endVoxel]]
availableColors = [colorCode for colorCode in range(numOfColors) if
colorCode not in existingColorsInStart and colorCode not in existingColorsInEnd]
# print('color in start: {} and color in end: {}'.format(existingColorsInStart, existingColorsInEnd))
chosenColor = availableColors[0] if len(availableColors) != 0 else 0
nodeColorDict[startVoxel][-1][1] = chosenColor
nodeColorDict[endVoxel][-1][1] = chosenColor
segmentCoords = np.array(segment)
aa = gl.GLLinePlotItem(pos=segmentCoords, color=colorList[chosenColor], width=3)
aa.translate(*offset)
w.addItem(aa)
w.show()
pg.QtGui.QApplication.exec_()
# sys.exit(app.exec_())
def main():
start_time = timeit.default_timer()
baseFolder = os.path.abspath(os.path.dirname(__file__))
## Load existing volume ##
vesselVolumeMaskFolderPath = baseFolder
vesselVolumeMaskFileName = 'vesselVolumeMask.nii.gz'
vesselVolumeMask, vesselVolumeMaskAffine = loadVolume(vesselVolumeMaskFolderPath, vesselVolumeMaskFileName)
## Skeletonization ##
# analyze(vesselVolumeMask, baseFolder)
skeletonSegmentFolderPath = os.path.join(baseFolder, 'skeletonizationResult/segments_by_cc')
segmentListRough = combineSkeletonSegments(skeletonSegmentFolderPath)
shape = vesselVolumeMask.shape
# drawSegments(segmentListRough, shape)
G, segmentList, errorSegments = processSegments(segmentListRough, shape=shape)
# drawSegments(segmentList, shape)
G = nx.Graph()
segmentIndex = 0
for segment in segmentList:
G.add_path(segment, segmentIndex=segmentIndex)
segmentIndex += 1
## Save graph representation ##
graphFileName = 'graphRepresentation.graphml'
graphFilePath = os.path.join(baseFolder, graphFileName)
nx.write_graphml(G, graphFilePath)
print('{} saved to {}.'.format(graphFileName, graphFilePath))
## Save segmentList ##
segmentListFileName = 'segmentList.npz'
segmentListFilePath = os.path.join(baseFolder, segmentListFileName)
np.savez_compressed(segmentListFilePath, segmentList=segmentList)
print('{} saved to {}.'.format(segmentListFileName, segmentListFilePath))
## Save skeleton.nii.gz ##
skeleton = np.zeros_like(vesselVolumeMask)
for segment in segmentList:
skeleton[tuple(np.array(segment).T)] = 1
skeletonFileName = 'skeleton.nii.gz'
skeletonFilePath = os.path.join(baseFolder, skeletonFileName)
saveVolume(skeleton, vesselVolumeMaskAffine, skeletonFilePath, astype=np.uint8)
elapsed = timeit.default_timer() - start_time
print('Elapsed: {} sec'.format(elapsed))
if __name__ == "__main__":
main()
|