File size: 35,464 Bytes
b10768a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
import sys, os
import numpy as np
import nibabel as nib
from scipy import ndimage as ndi
from scipy.signal import convolve
from numpy.linalg import norm
import networkx as nx
import logging
import traceback
import timeit
import time
import math
from ast import literal_eval as make_tuple
from skimage.measure import label
import subprocess
import platform
import glob


def loadVolume(volumeFolderPath, volumeName):
    """
    Load nifti files (*.nii or *.nii.gz).
    Parameters
    ----------
    volumeFolderPath : str
        Folder of the volume file.
    volumeName : str
        Name of the volume file.

    Returns
    -------
    volume : ndarray
        Volume data in the form of numpy ndarray.
    affine : ndarray
        Associated affine transformation matrix in the form of numpy ndarray.
    """
    volumeFilePath = os.path.join(volumeFolderPath, volumeName)
    volumeImg = nib.load(volumeFilePath)
    volume = volumeImg.get_data()
    shape = volume.shape
    affine = volumeImg.affine
    print('Volume loaded from {} with shape = {}.'.format(volumeFilePath, shape))

    return volume, affine


def saveVolume(volume, affine, path, astype=None):
    """
    Save the given volume to the specified location in specified data type.
    Parameters
    ----------
    volume : ndarray
        Volume data to be saved.
    affine : ndarray
        The affine transformation matrix associated with the volume.
    path : str
        The absolute path where the volume is going to be saved.
    astype : numpy dtype, optional
        The desired data type of the volume data.
    """
    if astype is None:
        astype = np.uint8

    nib.save(nib.Nifti1Image(volume.astype(astype), affine), path)
    print('Volume saved to {} as type {}.'.format(path, astype))


def labelVolume(volume, minSize=1, maxHop=3):
    """
    Partition the volume into several connected components and attach labels.
    Parameters
    ----------
    volume : ndarray
        Volume to be partitioned.
    minSize : int, optional
        The connected component that is less than this size will be disgarded.
    maxHop : int, optional
        Controls how neighboring voxels are defined. See `label` doc for details.

    Returns
    -------
    labeled : ndarray
        The partitioned and labeled volume. Each connected component has a label (a positive integer) and the background
        is labeled as 0.
    labelResult : list
        In the form of [[label1, size1], [label2, size2], ...]
    """
    labeled, maxNum = label(volume, return_num=True, connectivity=maxHop)
    counts = np.bincount(labeled.ravel())
    countLoc = np.nonzero(counts)[0]
    sizeList = counts[countLoc]
    labelResult = list(zip(countLoc[sizeList >= minSize], sizeList[sizeList >= minSize]))
    # print(labelResult)
    # print('Total segments: {}'.format(np.count_nonzero(sizeList >= minSize)))
    return labeled, labelResult


def analyze(vesselVolumeMask, baseFolder):
    """
    Main function to provoke the skeletonization process. Note that here I am using the docker version of the code. If
    you have already downloaded the original C++ code and successfully compiled it, then you can run that compiled code
    instead of this one.
    """
    vesselVolumeMask = vesselVolumeMask.astype(np.uint8)
    vesselVolumeMask[vesselVolumeMask != 0] = 1
    vesselVolumeMask = np.swapaxes(vesselVolumeMask, 0, 2)
    shape = vesselVolumeMask.shape

    vesselVolumeMaskLabeled, vesselVolumeMaskLabelResult = labelVolume(vesselVolumeMask, minSize=1)
    directory = os.path.join(baseFolder, 'skeletonizationResult')
    if not os.path.exists(directory):
        os.makedirs(directory)
        print('Directory {} created.'.format(directory))

    vesselVolumeMaskLabelInfoFilename = 'vesselVolumeMaskLabelInfo.npz'
    vesselVolumeMaskLabelInfoFilePath = os.path.join(directory, vesselVolumeMaskLabelInfoFilename)
    np.savez_compressed(vesselVolumeMaskLabelInfoFilePath, vesselVolumeMaskLabeled=vesselVolumeMaskLabeled,
                        vesselVolumeMaskLabelResult=vesselVolumeMaskLabelResult)
    print('{} saved to {}.'.format(vesselVolumeMaskLabelInfoFilename, vesselVolumeMaskLabelInfoFilePath))

    # directory2 = directory + 'labelNum=' + str(labelNum) + '/'
    # if not os.path.exists(directory2):
    #     os.makedirs(directory2)
    # with open(directory2 + 'BB.txt', 'w') as f1:
    #     f1.write('1\n')
    #     f1.write('{} {} {}\n'.format(0, 0, 0))
    #     f1.write('{} {} {}'.format(*shape))
    # '''
    BBFilePath = os.path.join(directory, 'BB.txt')
    f1 = open(BBFilePath, 'w')
    f1.write('1\n')
    f1.write('{} {} {}\n'.format(0, 0, 0))
    f1.write('{} {} {}'.format(*shape))
    f1.close()

    vesselCoords = np.array(np.where(vesselVolumeMask)).T
    xyzFilePath = os.path.join(directory, 'xyz.txt')
    np.savetxt(xyzFilePath, vesselCoords, fmt='%1u')
    f2 = open(xyzFilePath, "r")
    contents = f2.readlines()
    f2.close()

    contents.insert(0, '{}\n'.format(len(vesselCoords)))

    f2 = open(xyzFilePath, "w")
    contents = "".join(contents)
    f2.write(contents)
    f2.close()
    # '''

    # '''
    currentPlatform = platform.system()
    print('Current platform is {}.'.format(currentPlatform))
    if currentPlatform == 'Windows':
        cmd = '"C:/Program Files/Docker/Docker/Resources/bin/docker.exe" run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-medeiros-2018-docker'
    elif currentPlatform == 'Darwin':
        cmd = 'docker run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-nih-aug2018-docker2'
    elif currentPlatform == 'Linux':
        cmd = '/usr/local/bin/docker run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-medeiros-2018-docker'
        cmd = 'sudo docker run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-medeiros-2018-docker'
        cmd = 'sudo docker run -v ' + '"' + directory + '"' + ':/write_directory -e THRESH=1e-12 -e CC_FLAG=1 -e CONVERSION_TYPE=1 amytabb/curveskel-tabb-nih-aug2018-docker2'

    print('cmd={}'.format(cmd))
    subprocess.call(cmd, shell=True)
    # '''


def combineSkeletonSegments(skeletonSegmentFolderPath):
    """
    Collect and combine the results from the skeletonization.
    Parameters
    ----------
    skeletonSegmentFolderPath : str
        The folder that contains the segments information (result_segments_xyz*.txt).

    Returns
    -------
    segmentList : list
        A list containing the segment information. Each sublist represents a segment and each element in the sublist
        represents a centerpoint coordinates.
    """
    segmentList = []
    files = glob.glob(os.path.join(skeletonSegmentFolderPath, 'result_segments_xyz*.txt'))
    for segmentFile in files:
        result = readSegmentFile(segmentFile)
        segmentList += result

    return segmentList


def readSegmentFile(segmentFile):
    """
    Parse the segment files (result_segments_xyz*.txt) and return segments information in a list.
    Parameters
    ----------
    segmentFile : str
        Path to the segment file.

    Returns
    -------
    segmentList : list
        A list containing the segment information. Each sublist represents a segment and each element in the sublist
        represents a centerpoint coordinates.
    """
    isFirstLine = True
    isSegmentLength = True
    segmentList = []
    with open(segmentFile) as f:
        for line in f:
            if isFirstLine:
                numOfSegments = int(line)
                isFirstLine = False
            else:
                if isSegmentLength:
                    segmentLength = int(line)
                    isSegmentLength = False
                    segmentCounter = 1
                    segment = []
                else:
                    if segmentCounter <= segmentLength:
                        voxel = tuple([int(x) for x in line.split(' ')])
                        segment.append(voxel[::-1])
                        segmentCounter += 1
                    else:
                        segmentCounter += 1
                        isSegmentLength = True
                        segmentList.append(segment)
                        assert (len(segment) == segmentLength)

    return segmentList


# def drawSegments(segmentList):
#     pass

def processSegments(segmentList, shape):
    """
    Re-partition the segments so that each segment is a simple branch, i.e., it does not contain bifurcation point
    unless at the two ends.
    Note that this function might be replaced by another more concise function `getSegmentList`.
    Parameters
    ----------
    segmentList : list
        A list containing the segment information. Each sublist represents a segment and each element in the sublist
        represents a centerpoint coordinates.
    shape : tuple
        Shape of the vessel volume (used for ploting).

    Returns
    -------
    G : NetworkX graph
        A graph in which each node represents a centerpoint and each edge represents a portion of a vessel branch.
    segmentList : list
        A list containing the segment information. Each sublist represents a segment and each element in the sublist
        represents a centerpoint coordinates.
    errorSegments : list
        A list that contains segments that cannot be fixed.
    """
    ## Import pyqtgraph ##
    from pyqtgraph.Qt import QtCore, QtGui
    import pyqtgraph as pg
    import pyqtgraph.opengl as gl

    ## Init ##
    app = pg.QtGui.QApplication([])
    w = gl.GLViewWidget()
    w.opts['distance'] = 800
    w.setGeometry(0, 110, 1600, 900)
    offset = np.array(shape) / (-2.0)

    G = nx.Graph()
    colorList = [pg.glColor('r'), pg.glColor('g'), pg.glColor('b'), pg.glColor('c'), pg.glColor('m'), pg.glColor('y')]
    colorPointer = 0
    skeleton = np.full(shape, 0)
    for segment in segmentList:
        # G.add_path(list(map(tuple, segment)))
        G.add_path(segment)
        segmentCoords = np.array(segment)
        skeleton[tuple(segmentCoords.T)] = 1
        # segmentCoordsView = segmentCoords + offset
        # aa = gl.GLLinePlotItem(pos=segmentCoordsView, color=colorList[colorPointer], width=3)
        # w.addItem(aa)
        # colorPointer = colorPointer + 1 if colorPointer < len(colorList) - 1 else 0

    # skeletonCoords = np.array(np.where(skeleton)).T
    # skeletonCoordsView = (skeletonCoords + offset) * affineTransform
    # aa = gl.GLScatterPlotItem(pos=skeletonCoordsView, size=5)
    # w.addItem(aa)

    # w.show()

    voxelDegrees = np.array([v for _, v in G.degree(G.nodes())])
    maxVoxelDegree = np.amax(voxelDegrees)
    voxelDegreesZippedResult = list(zip(np.arange(maxVoxelDegree + 1), np.bincount(voxelDegrees)))
    print('Voxel degree distribution is \n{}'.format(voxelDegreesZippedResult))
    print('Number of cycles is {}'.format(len(nx.cycle_basis(G))))

    # Remove duplicate segments
    keepList = np.full((len(segmentList),), True)
    duplicateCounter = 0
    for idx, seg in enumerate(segmentList):
        for idx2, seg2 in enumerate(segmentList[idx + 1:]):
            if seg == seg2 or seg == seg2[::-1]:
                keepList[idx + idx2] = False
                duplicateCounter += 1

    segmentList = [seg for idx, seg in enumerate(segmentList) if keepList[idx]]
    print('{} duplicate segments removed!'.format(duplicateCounter))

    # Cut segments into sub-pieces if there are bifurcation points in the middle
    extraSegments = []
    keepList = np.full((len(segmentList),), True)
    for idx, segment in enumerate(segmentList):
        voxelDegrees = np.array([v for _, v in G.degree(segment)])
        if len(voxelDegrees) >= 3:
            if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2 or (not np.all(voxelDegrees[1:-1] == 2)):
                keepList[idx] = False
                locs = np.nonzero(voxelDegrees != 2)[0]
                if voxelDegrees[0] == 2:
                    locs = np.hstack((0, locs))

                if voxelDegrees[-1] == 2:
                    locs = np.hstack((locs, len(voxelDegrees)))

                newSegments = []
                for ii in range(len(locs) - 1):
                    newSegments.append(segment[locs[ii]:(locs[ii + 1] + 1)])

                extraSegments += newSegments

    segmentList = [seg for idx, seg in enumerate(segmentList) if keepList[idx]]
    segmentList += extraSegments

    # Remove duplicate segments again
    keepList = np.full((len(segmentList),), True)
    duplicateCounter = 0
    for idx, seg in enumerate(segmentList):
        for idx2, seg2 in enumerate(segmentList[idx + 1:]):
            if seg == seg2 or seg == seg2[::-1]:
                keepList[idx + idx2] = False
                duplicateCounter += 1

    segmentList = [seg for idx, seg in enumerate(segmentList) if keepList[idx]]
    print('{} duplicate segments removed in the second stage!'.format(duplicateCounter))

    # Remove segment if it is completely contained in another segment
    # keepList = np.full((len(segmentList),), True)
    # sublistCounter = 0
    # for idx, seg in enumerate(segmentList):
    #     for idx2, seg2 in enumerate(segmentList[idx + 1:]):
    #         if contains(seg, seg2):
    #             keepList[idx] = False
    #             sublistCounter += 1
    #         elif contains(seg2, seg):
    #             keepList[idx + idx2] = False
    #             sublistCounter += 1

    # segmentList = [seg for idx, seg in enumerate(segmentList) if keepList[idx]]
    # print('{} sublist segments removed!'.format(sublistCounter))

    # Treat the segment if either end is not correct
    hasInvalidSegments = False
    for idx, segment in enumerate(segmentList):
        voxelDegrees = np.array([v for _, v in G.degree(segment)])
        if len(voxelDegrees) == 2:
            if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2:
                # print('Degrees on either end is 2: {}'.format(voxelDegrees))
                hasInvalidSegments = True
        elif len(voxelDegrees) > 2:
            if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2 or np.any(voxelDegrees[1:-1] != 2):
                # print('Degrees not correct: {}'.format(voxelDegrees))
                hasInvalidSegments = True

    if not hasInvalidSegments:
        drawSegments(segmentList, shape)
        print('No errors!')
        errorSegments = []
        return G, segmentList, errorSegments

    iterCounter = 1
    while hasInvalidSegments:
        print('\n\nIter={}'.format(iterCounter))
        keepList = np.full((len(segmentList),), True)
        extraSegments = []
        for idx, segment in enumerate(segmentList):
            if keepList[idx]:
                voxelDegrees = np.array([v for _, v in G.degree(segment)])
                if voxelDegrees[0] == 2 and voxelDegrees[-1] == 2:
                    print('Both end have 2 neighbours')
                elif voxelDegrees[0] == 2 or voxelDegrees[-1] == 2:
                    # print('Degrees on either end is 2: {}'.format(voxelDegrees))
                    # pass
                    # segmentCoords = np.array(segment)
                    if voxelDegrees[0] == 2:
                        otherSegmentInfo = [(idx2, seg) for idx2, seg in enumerate(segmentList) if
                                            (seg[0] == segment[0] or seg[-1] == segment[0]) and keepList[
                                                idx2] and idx != idx2]
                        if len(otherSegmentInfo) != 0:
                            if len(otherSegmentInfo) > 1:
                                # print(contains(segment, otherSegmentInfo[0][1]), contains(otherSegmentInfo[1][1], segment))
                                otherSegmentInfoTemp = []
                                for idx2, seg in otherSegmentInfo:
                                    if contains(segment, seg) or contains(segment[::-1], seg):
                                        keepList[idx] = False
                                        continue
                                    elif contains(seg, segment) or contains(seg[::-1], segment):
                                        keepList[idx2] = False
                                        otherSegmentInfoTemp.append((idx2, seg))

                                otherSegmentInfo = otherSegmentInfoTemp
                                # otherSegmentInfo = [segInfo for segInfo in otherSegmentInfo if not (contains(segment, segInfo[1]) or contains(segInfo[1], segment))]
                                if len(otherSegmentInfo) > 1:
                                    print('More than one other segments found!')
                                    print('Current segment ({}) is {} ({})'.format(idx, segment, voxelDegrees))
                                    for otherSegmentIdx, otherSegment in otherSegmentInfo:
                                        otherSegmentVoxelDegrees = np.array([v for _, v in G.degree(otherSegment)])
                                        print('Idx = {}: {} ({})'.format(otherSegmentIdx, otherSegment,
                                                                         otherSegmentVoxelDegrees))
                                elif len(otherSegmentInfo) == 1:
                                    otherSegmentIdx, otherSegment = otherSegmentInfo[0]
                                else:
                                    print('No valid other segments found!')
                                    continue
                            else:
                                otherSegmentIdx, otherSegment = otherSegmentInfo[0]
                                if contains(segment, otherSegment) or contains(segment[::-1], otherSegment):
                                    keepList[idx] = False
                                    continue
                                elif contains(otherSegment, segment) or contains(otherSegment[::-1], segment):
                                    keepList[otherSegmentIdx] = False
                                    continue

                            newSegment = otherSegment + segment[1:] if otherSegment[-1] == segment[0] else otherSegment[
                                                                                                           ::-1] + segment[
                                                                                                                   1:]
                            if not validateSegment(G, newSegment):
                                newSegmentVoxelDegrees = np.array([v for _, v in G.degree(newSegment)])
                                print('Old degree is {} () and new degree is {} ()'.format(voxelDegrees,
                                                                                           newSegmentVoxelDegrees))
                            else:
                                print('Two segments ({} and {}) merged together!'.format(idx, otherSegmentIdx))

                            extraSegments.append(newSegment)
                            keepList[idx] = False
                            keepList[otherSegmentIdx] = False
                        else:
                            print(
                                'Could not find other segments for segment({}) {} with degrees {}'.format(idx, segment,
                                                                                                          voxelDegrees))
                            possibleSegmentsInfo = [(idx2, seg) for idx2, seg in enumerate(segmentList) if
                                                    (seg[0] == segment[0] or seg[-1] == segment[0]) and idx != idx2]
                            print('Possible segments: {}'.format(len(possibleSegmentsInfo)))

                    elif voxelDegrees[-1] == 2:
                        otherSegmentInfo = [(idx2, seg) for idx2, seg in enumerate(segmentList) if
                                            (seg[0] == segment[-1] or seg[-1] == segment[-1]) and keepList[
                                                idx2] and idx != idx2]
                        if len(otherSegmentInfo) != 0:
                            if len(otherSegmentInfo) > 1:
                                # print(contains(segment, otherSegmentInfo[0][1]), contains(otherSegmentInfo[1][1], segment))
                                otherSegmentInfoTemp = []
                                for idx2, seg in otherSegmentInfo:
                                    if contains(segment, seg) or contains(segment[::-1], seg):
                                        keepList[idx] = False
                                        continue
                                    elif contains(seg, segment) or contains(seg[::-1], segment):
                                        keepList[idx2] = False
                                        otherSegmentInfoTemp.append((idx2, seg))

                                otherSegmentInfo = otherSegmentInfoTemp
                                # otherSegmentInfo = [segInfo for segInfo in otherSegmentInfo if not (contains(segment, segInfo[1]) or contains(segInfo[1], segment))]
                                if len(otherSegmentInfo) > 1:
                                    print('More than one other segments found!')
                                    print('Current segment ({}) is {} ({})'.format(idx, segment, voxelDegrees))
                                    for otherSegmentIdx, otherSegment in otherSegmentInfo:
                                        otherSegmentVoxelDegrees = np.array([v for _, v in G.degree(otherSegment)])
                                        print('Idx = {}: {} ({})'.format(otherSegmentIdx, otherSegment,
                                                                         otherSegmentVoxelDegrees))
                                elif len(otherSegmentInfo) == 1:
                                    otherSegmentIdx, otherSegment = otherSegmentInfo[0]
                                else:
                                    print('No valid other segments found!')
                                    continue
                            else:
                                otherSegmentIdx, otherSegment = otherSegmentInfo[0]
                                if contains(segment, otherSegment) or contains(segment[::-1], otherSegment):
                                    keepList[idx] = False
                                    continue
                                elif contains(otherSegment, segment) or contains(otherSegment[::-1], segment):
                                    keepList[otherSegmentIdx] = False
                                    continue

                            newSegment = segment[:-1] + otherSegment if otherSegment[0] == segment[-1] else segment[
                                                                                                            :-1] + otherSegment[
                                                                                                                   ::-1]
                            if not validateSegment(G, newSegment):
                                newSegmentVoxelDegrees = np.array([v for _, v in G.degree(newSegment)])
                                print('Old degree is {} () and new degree is {} ()'.format(voxelDegrees,
                                                                                           newSegmentVoxelDegrees))
                            else:
                                print('Two segments ({} and {}) merged together!'.format(idx, otherSegmentIdx))

                            extraSegments.append(newSegment)
                            keepList[idx] = False
                            keepList[otherSegmentIdx] = False
                        else:
                            print(
                                'Could not find other segments for segment({}) {} with degrees {}'.format(idx, segment,
                                                                                                          voxelDegrees))
                            possibleSegmentsInfo = [(idx2, seg) for idx2, seg in enumerate(segmentList) if
                                                    (seg[0] == segment[-1] or seg[-1] == segment[-1]) and idx != idx2]
                            print('Possible segments: {}'.format(len(possibleSegmentsInfo)))

        segmentList = [segment for idx, segment in enumerate(segmentList) if keepList[idx]]
        segmentList += extraSegments
        hasInvalidSegments = False
        errorSegments = []
        for idx, segment in enumerate(segmentList):
            voxelDegrees = np.array([v for _, v in G.degree(segment)])
            if len(voxelDegrees) == 2:
                if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2:
                    print('Degrees on either end is 2: {}'.format(voxelDegrees))
                    hasInvalidSegments = True
                    errorSegments.append(segment)
            elif len(voxelDegrees) > 2:
                if voxelDegrees[0] == 2 or voxelDegrees[-1] == 2 or np.any(voxelDegrees[1:-1] != 2):
                    print('Degrees not correct: {}'.format(voxelDegrees))
                    hasInvalidSegments = True
                    errorSegments.append(segment)

        print('hasInvalidSegments = {}'.format(hasInvalidSegments))
        iterCounter += 1
        if len(extraSegments) == 0:
            hasInvalidSegments = False
            print('While loop aborted because there is no change in segments!')

    for errorSegment in errorSegments:
        segmentList.remove(errorSegment)

    # np.savez_compressed(directory + 'segmentList.npz', segmentList=segmentList)
    # if partIdx != 10:
    #     nib.save(nib.Nifti1Image(skeleton.astype(np.int16), vesselImg.affine), directory + skeletonNamePartial + str(partIdx) + '.nii.gz')
    # else:
    #     nib.save(nib.Nifti1Image(skeleton.astype(np.int16), vesselImg.affine), directory + skeletonNameTotal + '.nii.gz')

    # nx.write_graphml(G, directory + 'graphRepresentation.graphml')

    # drawAbstractGraph(offset, segmentList)
    # drawAbstractGraph(offset, errorSegments)

    print(errorSegments)

    return G, segmentList, errorSegments


def getSegmentList(G, nodeInfoDict):
    """
    Generate segmentList from graph and nodeInfoDict.
    Parameters
    ----------
    G : NetworkX graph
        The graph representation of the network.
    nodeInfoDict : dict
        A dictionary containing the information about nodes.

    Returns
    -------
    segmentList : list
        A list of segments in which each segment is a simple branch.
    """
    startNodeIDList = [nodeID for nodeID in nodeInfoDict.keys() if nodeInfoDict[nodeID]['parentNodeID'] == -1]
    print('startNodeIDList = {}'.format(startNodeIDList))
    segmentList = []
    for startNodeID in startNodeIDList:
        segmentList = getSegmentListDetail(G, nodeInfoDict, segmentList, startNodeID)

    print('There are {} segments in segmentList'.format(len(segmentList)))
    print(segmentList)
    return segmentList


def getSegmentListDetail(G, nodeInfoDict, segmentList, startNodeID):
    """
    Implementation of `getSegmentList`. Use DFS to traverse all the segments.
    Parameters
    ----------
    G : NetworkX graph
        The graph representation of the network.
    nodeInfoDict : dict
        A dictionary containing the information about nodes.
    segmentList : list
        A list of segments in which each segment is a simple branch.
    startNodeID : int
        The index of the start point of a segment.

    Returns
    -------
    segmentList : list
        A list of segments in which each segment is a simple branch.
    """
    neighborNodeIDList = [nodeID for nodeID in list(G[startNodeID].keys()) if
                          'visited' not in G[startNodeID][nodeID]]  # use adjacency dict to find neighbors
    newSegmentList = []
    for neighborNodeID in neighborNodeIDList:
        newSegment = [startNodeID, neighborNodeID]
        G[startNodeID][neighborNodeID]['visited'] = True
        currentNodeID = neighborNodeID
        while G.degree(currentNodeID) == 2:
            newNodeID = [nodeID for nodeID in G[currentNodeID].keys() if 'visited' not in G[currentNodeID][nodeID]][0]
            G[currentNodeID][newNodeID]['visited'] = True
            newSegment.append(newNodeID)
            currentNodeID = newNodeID

        newSegmentList.append(newSegment)
        segmentList.append(newSegment)
        segmentList = getSegmentListDetail(G, nodeInfoDict, segmentList, currentNodeID)

    return segmentList


def sublist(ls1, ls2):
    '''
    >>> sublist([], [1,2,3])
    True
    >>> sublist([1,2,3,4], [2,5,3])
    True
    >>> sublist([1,2,3,4], [0,3,2])
    False
    >>> sublist([1,2,3,4], [1,2,5,6,7,8,5,76,4,3])
    False
    '''

    def get_all_in(one, another):
        for element in one:
            if element in another:
                yield element

    for x1, x2 in zip(get_all_in(ls1, ls2), get_all_in(ls2, ls1)):
        if x1 != x2:
            return False

    return True


def contains(lst1, lst2):
    lst1, lst2 = (lst2, lst1) if len(lst1) > len(lst2) else (lst1, lst2)
    if lst1[0] in lst2:
        startLoc = lst2.index(lst1[0])
    else:
        return False

    if lst1[-1] in lst2:
        endLoc = lst2.index(lst1[-1])
    else:
        return False

    if startLoc < endLoc:
        if lst1 == lst2[startLoc:(endLoc + 1)]:
            return True
        else:
            return False
    else:
        if lst1 == lst2[endLoc:(startLoc + 1)][::-1]:
            return True
        else:
            return False


def validateSegment(G, segment):
    """
    Check whether a segment is a simple branch.
    Parameters
    ----------
    G : NetworkX graph
        A graph in which each node represents a centerpoint and each edge represents a portion of a vessel branch.
    segment : list
        A list containing the coordinates of the centerpoints of a segment.

    Returns
    -------
    result : bool
        If True, the segment is a simple branch.
    """
    voxelDegrees = np.array([v for _, v in G.degree(segment)])
    if voxelDegrees[0] != 2 and voxelDegrees[-1] != 2:
        if len(voxelDegrees) == 2:
            result = True
        elif len(voxelDegrees) > 2:
            if np.all(voxelDegrees[1:-1] == 2):
                result = True
            else:
                result = False
        else:
            print('Error! Segment with length 1 found!')
            result = False
    else:
        result = False

    return result


def drawSegments(segmentList, shape):
    """
    Plot all the segments in `segmentList`. Try to assign different colors to the segments connected to the same node.
    Parameters
    ----------
    segmentList : list
        A list containing the segment information. Each sublist represents a segment and each element in the sublist
        represents a centerpoint coordinates.
    shape : tuple
        Shape of the vessel volume (used for ploting).
    """
    ## Import pyqtgraph ##
    from pyqtgraph.Qt import QtCore, QtGui
    import pyqtgraph as pg
    import pyqtgraph.opengl as gl

    ## Init ##
    app = pg.QtGui.QApplication([])
    w = gl.GLViewWidget()
    w.opts['distance'] = 800
    w.setGeometry(0, 110, 1600, 900)
    offset = np.array(shape) / (-2.0)

    colorList = [pg.glColor('r'), pg.glColor('g'), pg.glColor('b'), pg.glColor('c'), pg.glColor('m'), pg.glColor('y')]
    colorNames = ['Red', 'Green', 'Blue', 'Cyan', 'Magneta', 'Yellow']
    numOfColors = len(colorList)
    nodeColorDict = {}
    for segment in segmentList:
        startVoxel = segment[0]
        endVoxel = segment[-1]
        if startVoxel in nodeColorDict and endVoxel in nodeColorDict:  # and endVoxel in [voxel for voxel, _ in nodeColorDict[startVoxel]]:
            nodeColorDict[startVoxel].append([endVoxel, -1])
            nodeColorDict[endVoxel].append([startVoxel, -1])
        else:
            if startVoxel not in nodeColorDict:
                nodeColorDict[startVoxel] = [[endVoxel, -1]]
            else:
                nodeColorDict[startVoxel].append([endVoxel, -1])

            if endVoxel not in nodeColorDict:
                nodeColorDict[endVoxel] = [[startVoxel, -1]]
            else:
                nodeColorDict[endVoxel].append([startVoxel, -1])

        existingColorsInStart = [colorCode for _, colorCode in nodeColorDict[startVoxel]]
        existingColorsInEnd = [colorCode for _, colorCode in nodeColorDict[endVoxel]]
        availableColors = [colorCode for colorCode in range(numOfColors) if
                           colorCode not in existingColorsInStart and colorCode not in existingColorsInEnd]
        # print('color in start: {} and color in end: {}'.format(existingColorsInStart, existingColorsInEnd))
        chosenColor = availableColors[0] if len(availableColors) != 0 else 0
        nodeColorDict[startVoxel][-1][1] = chosenColor
        nodeColorDict[endVoxel][-1][1] = chosenColor

        segmentCoords = np.array(segment)
        aa = gl.GLLinePlotItem(pos=segmentCoords, color=colorList[chosenColor], width=3)
        aa.translate(*offset)
        w.addItem(aa)

    w.show()
    pg.QtGui.QApplication.exec_()
    # sys.exit(app.exec_())


def main():
    start_time = timeit.default_timer()
    baseFolder = os.path.abspath(os.path.dirname(__file__))

    ## Load existing volume ##
    vesselVolumeMaskFolderPath = baseFolder
    vesselVolumeMaskFileName = 'vesselVolumeMask.nii.gz'
    vesselVolumeMask, vesselVolumeMaskAffine = loadVolume(vesselVolumeMaskFolderPath, vesselVolumeMaskFileName)

    ## Skeletonization ##
    # analyze(vesselVolumeMask, baseFolder)

    skeletonSegmentFolderPath = os.path.join(baseFolder, 'skeletonizationResult/segments_by_cc')
    segmentListRough = combineSkeletonSegments(skeletonSegmentFolderPath)

    shape = vesselVolumeMask.shape
    # drawSegments(segmentListRough, shape)

    G, segmentList, errorSegments = processSegments(segmentListRough, shape=shape)
    # drawSegments(segmentList, shape)
    G = nx.Graph()
    segmentIndex = 0
    for segment in segmentList:
        G.add_path(segment, segmentIndex=segmentIndex)
        segmentIndex += 1

    ## Save graph representation ##
    graphFileName = 'graphRepresentation.graphml'
    graphFilePath = os.path.join(baseFolder, graphFileName)
    nx.write_graphml(G, graphFilePath)
    print('{} saved to {}.'.format(graphFileName, graphFilePath))

    ## Save segmentList ##
    segmentListFileName = 'segmentList.npz'
    segmentListFilePath = os.path.join(baseFolder, segmentListFileName)
    np.savez_compressed(segmentListFilePath, segmentList=segmentList)
    print('{} saved to {}.'.format(segmentListFileName, segmentListFilePath))

    ## Save skeleton.nii.gz ##
    skeleton = np.zeros_like(vesselVolumeMask)
    for segment in segmentList:
        skeleton[tuple(np.array(segment).T)] = 1

    skeletonFileName = 'skeleton.nii.gz'
    skeletonFilePath = os.path.join(baseFolder, skeletonFileName)
    saveVolume(skeleton, vesselVolumeMaskAffine, skeletonFilePath, astype=np.uint8)

    elapsed = timeit.default_timer() - start_time
    print('Elapsed: {} sec'.format(elapsed))


if __name__ == "__main__":
    main()