Spaces:
Running
Running
File size: 7,936 Bytes
241ef3e 21400f7 241ef3e 1b4af4d 241ef3e c468f0b 3b9d4b9 241ef3e 123a08c 241ef3e a0bc604 2576b84 c8972e0 241ef3e 61aa9bc 241ef3e 3209aa9 7220845 241ef3e faf6587 2c7d43a a0bc604 922a8cc a0bc604 faf6587 a0bc604 faf6587 2c7d43a 8412f5f 2c7d43a 8412f5f 2c7d43a 61aa9bc 241ef3e af8f367 241ef3e 7c28338 61aa9bc 241ef3e 61aa9bc 241ef3e 24b48b7 241ef3e 61aa9bc 241ef3e 6b70d16 241ef3e 6b70d16 241ef3e 6b70d16 241ef3e 1b4af4d 241ef3e 61aa9bc 241ef3e 3209aa9 e09f1ba 3209aa9 43eab4c e09f1ba 43eab4c 3209aa9 241ef3e 3209aa9 241ef3e 49e2598 c468f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
title: 'AeroPath: automatic airway segmentation using deep learning'
colorFrom: indigo
colorTo: indigo
sdk: docker
app_port: 7860
emoji: 🫁
pinned: false
license: mit
app_file: demo/app.py
---
<div align="center">
<h1 align="center">🫁 AeroPath 🤗</h1>
<h3 align="center">An airway segmentation benchmark dataset with challenging pathology</h3>
[![license](https://img.shields.io/github/license/DAVFoundation/captain-n3m0.svg?style=flat-square)](https://github.com/raidionics/AeroPath/blob/main/LICENSE.md)
[![CI/CD](https://github.com/raidionics/AeroPath/actions/workflows/deploy.yml/badge.svg)](https://github.com/raidionics/AeroPath/actions/workflows/deploy.yml)
<a target="_blank" href="https://huggingface.co/spaces/andreped/AeroPath"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-yellow.svg"></a>
<a href="https://colab.research.google.com/gist/andreped/6070d1d2914a9ce5847d4b3e687188b7/aeropath-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10069288.svg)](https://doi.org/10.5281/zenodo.10069288)
[![paper](https://img.shields.io/badge/arXiv-preprint-D12424)](https://arxiv.org/abs/2311.01138)
**AeroPath** was developed by SINTEF Medical Image Analysis to accelerate medical AI research.
</div>
## [Brief intro](https://github.com/raidionics/AeroPath#brief-intro)
This repository contains the AeroPath dataset described in ["_AeroPath: An airway segmentation benchmark dataset with challenging pathology_"](https://arxiv.org/abs/2311.01138). A web application was also developed in the study, to enable users to easily test our deep learning model on their own data. The application was developed using [Gradio](https://www.gradio.app) for the frontend and the segmentation is performed using the [Raidionics](https://raidionics.github.io/) backend.
The dataset is made openly available at [Zenodo](https://zenodo.org/records/10069289) and [the Hugging Face Hub](https://huggingface.co/datasets/andreped/AeroPath). Click any of the two hyperlinks to access the dataset.
## [Dataset](https://github.com/raidionics/AeroPath#data) <a href="https://colab.research.google.com/gist/andreped/6070d1d2914a9ce5847d4b3e687188b7/aeropath-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
### [Accessing dataset](https://github.com/raidionics/AeroPath#accessing-dataset)
The dataset contains 27 CTs with corresponding airways and lung annotations. The folder structure is described below.
The easiest way to access the data is in Python with Hugging Face's [datasets](https://pypi.org/project/datasets/) package:
```
from datasets import load_dataset
# downloads data from Zenodo through the Hugging Face hub
# - might take several minutes (~5 minutes in CoLab)
dataset = load_dataset("andreped/AeroPath")
print(dataset)
# list paths of all available patients and corresponding features (ct/airways/lungs)
for d in dataset["test"]:
print(d)
```
A detailed interactive demo on how to load and work with the data can be seen on CoLab. Click the CoLab badge <a href="https://colab.research.google.com/gist/andreped/6070d1d2914a9ce5847d4b3e687188b7/aeropath-load-dataset-example.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> to see the notebook or alternatively click [here](https://github.com/raidionics/AeroPath/blob/main/notebooks/aeropath-load-dataset-example.ipynb) to see it on GitHub.
### [Dataset structure](https://github.com/raidionics/AeroPath#dataset-structure)
```
└── AeroPath.zip
├── README.md
└── AeroPath/
├── 1/
│ ├── 1_CT_HR.nii.gz
│ ├── 1_CT_HR_label_airways.nii.gz
│ └── 1_CT_HR_label_lungs.nii.gz
├── [...]
└── 27/
├── 27_CT_HR.nii.gz
├── 27_CT_HR_label_airways.nii.gz
└── 27_CT_HR_label_lungs.nii.gz
```
## [Demo](https://github.com/raidionics/AeroPath#demo) <a target="_blank" href="https://huggingface.co/spaces/andreped/AeroPath"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-yellow.svg"></a>
To access the live demo, click on the `Hugging Face` badge above. Below is a snapshot of the current state of the demo app.
<img width="1400" alt="Screenshot 2023-10-31 at 01 34 47" src="https://github.com/raidionics/AeroPath/assets/29090665/bd2db9ff-b188-4f90-aa96-4723b8e7597c">
## [Continuous integration](https://github.com/raidionics/AeroPath#continuous-integration)
| Build Type | Status |
| - | - |
| **HF Deploy** | [![Deploy](https://github.com/raidionics/AeroPath/workflows/Deploy/badge.svg)](https://github.com/raidionics/AeroPath/actions) |
| **File size check** | [![Filesize](https://github.com/raidionics/AeroPath/workflows/Check%20file%20size/badge.svg)](https://github.com/raidionics/AeroPath/actions) |
| **Formatting check** | [![Filesize](https://github.com/raidionics/AeroPath/workflows/Linting/badge.svg)](https://github.com/raidionics/AeroPath/actions) |
## [Development](https://github.com/raidionics/AeroPath#development)
### [Docker](https://github.com/raidionics/AeroPath#docker)
Alternatively, you can deploy the software locally. Note that this is only relevant for development purposes. Simply dockerize the app and run it:
```
docker build -t aeropath .
docker run -it -p 7860:7860 aeropath
```
Then open `http://127.0.0.1:7860` in your favourite internet browser to view the demo.
### [Python](https://github.com/raidionics/AeroPath#python)
It is also possible to run the app locally without Docker. Just setup a virtual environment and run the app.
Note that the current working directory would need to be adjusted based on where `AeroPath` is located on disk.
```
git clone https://github.com/raidionics/AeroPath.git
cd AeroPath/
virtualenv -python3 venv --clear
source venv/bin/activate
pip install -r ./demo/requirements.txt
python demo/app.py --cwd ./
```
## [Citation](https://github.com/raidionics/AeroPath#citation)
If you found the dataset and/or web application relevant in your research, please cite the following reference:
```
@misc{støverud2023aeropath,
title={{AeroPath: An airway segmentation benchmark dataset with challenging pathology}},
author={Karen-Helene Støverud and David Bouget and Andre Pedersen and Håkon Olav Leira and Thomas Langø and Erlend Fagertun Hofstad},
year={2023},
eprint={2311.01138},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
The dataset is hosted at Zenodo, so you should also cite the following:
```
@dataset{hofstad2023aeropathzenodo,
title = {{AeroPath: An airway segmentation benchmark dataset with challenging pathology}},
author = {Hofstad, Erlend and Bouget, David and Pedersen, André},
month = nov,
year = 2023,
publisher = {Zenodo},
doi = {10.5281/zenodo.10069289},
url = {https://doi.org/10.5281/zenodo.10069289}
}
```
The web application is using the [Raidionics]() backend, thus, also consider citing:
```
@article{bouget2023raidionics,
title = {Raidionics: an open software for pre-and postoperative central nervous system tumor segmentation and standardized reporting},
author = {Bouget, David and Alsinan, Demah and Gaitan, Valeria and Holden Helland, Ragnhild and Pedersen, André and Solheim, Ole and Reinertsen, Ingerid},
year = {2023},
month = {09},
pages = {},
volume = {13},
journal = {Scientific Reports},
doi = {10.1038/s41598-023-42048-7},
}
```
## [License](https://github.com/raidionics/AeroPath#license)
The code in this repository is released under [MIT license](https://github.com/raidionics/AeroPath/blob/main/LICENSE.md).
|