Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,303 Bytes
ade70cf 1d51385 d69fd19 d7f29ce ade70cf 1d51385 d7f29ce d9cf2fe d7f29ce ade70cf d7f29ce ade70cf 1d51385 d7f29ce 39ae23a ade70cf 50fae8a d502400 50fae8a ade70cf d256f3b 50fae8a ca16909 d256f3b 2f7ee0a 69958d1 beec895 50fae8a 1d51385 69958d1 ade70cf 1d51385 ade70cf 1d51385 ade70cf 6172e67 ade70cf 1d51385 ade70cf 1d51385 6172e67 1d51385 d502400 6172e67 50fae8a 6172e67 50fae8a d502400 6172e67 50fae8a d502400 6172e67 50fae8a d502400 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a d502400 6172e67 50fae8a 6172e67 1d51385 6172e67 50fae8a 6172e67 50fae8a 6172e67 50fae8a 6172e67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import spaces
import requests
import copy
from PIL import Image, ImageDraw, ImageFont
import io
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import random
import numpy as np
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval()
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
DESCRIPTION = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
def fig_to_pil(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
@spaces.GPU
def run_example(task_prompt, image, text_input=None):
model = model
processor = processor
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def plot_bbox(image, data):
fig, ax = plt.subplots()
ax.imshow(image)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
ax.axis('off')
return fig
def draw_polygons(image, prediction, fill_mask=False):
draw = ImageDraw.Draw(image)
scale = 1
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = random.choice(colormap)
fill_color = random.choice(colormap) if fill_mask else None
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
if fill_mask:
draw.polygon(_polygon, outline=color, fill=fill_color)
else:
draw.polygon(_polygon, outline=color)
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
return image
def convert_to_od_format(data):
bboxes = data.get('bboxes', [])
labels = data.get('bboxes_labels', [])
od_results = {
'bboxes': bboxes,
'labels': labels
}
return od_results
def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text((new_box[0]+8, new_box[1]+2),
"{}".format(label),
align="right",
fill=color)
return image
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'):
image = Image.fromarray(image) # Convert NumPy array to PIL Image
if task_prompt == 'Document Visual Question Answering':
task_prompt = '<DocVQA>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'Caption':
task_prompt = '<CAPTION>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'Detailed Caption':
task_prompt = '<DETAILED_CAPTION>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'More Detailed Caption':
task_prompt = '<MORE_DETAILED_CAPTION>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'Object Detection':
task_prompt = '<OD>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<OD>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Dense Region Caption':
task_prompt = '<DENSE_REGION_CAPTION>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Region Proposal':
task_prompt = '<REGION_PROPOSAL>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Caption to Phrase Grounding':
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
results = run_example(task_prompt, image, text_input)
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Referring Expression Segmentation':
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
results = run_example(task_prompt, image, text_input)
output_image = copy.deepcopy(image)
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
return results, output_image
elif task_prompt == 'Region to Segmentation':
task_prompt = '<REGION_TO_SEGMENTATION>'
results = run_example(task_prompt, image, text_input)
output_image = copy.deepcopy(image)
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
return results, output_image
elif task_prompt == 'Open Vocabulary Detection':
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
results = run_example(task_prompt, image, text_input)
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
fig = plot_bbox(image, bbox_results)
return results, fig_to_pil(fig)
elif task_prompt == 'Region to Category':
task_prompt = '<REGION_TO_CATEGORY>'
results = run_example(task_prompt, image, text_input)
return results, None
elif task_prompt == 'Region to Description':
task_prompt = '<REGION_TO_DESCRIPTION>'
results = run_example(task_prompt, image, text_input)
return results, None
elif task_prompt == 'OCR':
task_prompt = '<OCR>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'OCR with Region':
task_prompt = '<OCR_WITH_REGION>'
results = run_example(task_prompt, image)
output_image = copy.deepcopy(image)
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
return results, output_image
else:
return "", None # Return empty string and None for unknown task prompts
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Florence-2 Image Captioning"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
task_prompt = gr.Dropdown(choices=[
'Document Visual Question Answering',
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
'Referring Expression Segmentation', 'Region to Segmentation',
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
'OCR', 'OCR with Region'
], label="Task Prompt", value= 'Document Visual Question Answering')
text_input = gr.Textbox(label="Text Input (optional)")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
output_img = gr.Image(label="Output Image")
gr.Examples(
examples=[
["image1.jpg", 'Object Detection'],
["image2.jpg", 'OCR with Region']
],
inputs=[input_img, task_prompt],
outputs=[output_text, output_img],
fn=process_image,
cache_examples=True,
label='Try examples'
)
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
demo.launch(debug=True) |