File size: 955 Bytes
2a7146c 013c1cb 2a7146c 013c1cb 2a7146c 8906f61 013c1cb 4d6e03f 013c1cb 0f8e225 013c1cb 277d88e 013c1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import gradio as gr
from fastai.vision.all import *
import skimage
learn = load_learner('export.pkl')
labels = ('Lego (non Ninjago)', 'Lego Ninjago')
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Lego Classifier"
description = "Classifies Lego into 'Ninjago' and 'Non Ninjago' with fastai. Created from the fastai demo for Gradio and HuggingFace Spaces."
#article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['ninjago.jpeg', 'lego.jpeg']
interpretation = 'default'
enable_queue = True
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(192, 192)), outputs=gr.outputs.Label(), title=title,
description=description, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()
|