File size: 4,854 Bytes
54b1993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675c0d
 
 
6052d7f
 
609642b
54b1993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc0495d
54b1993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609642b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b1993
609642b
 
54b1993
 
609642b
 
072bc06
54b1993
609642b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128514a
609642b
 
 
128514a
 
 
 
 
609642b
 
 
 
 
072bc06
54b1993
 
df24eff
 
 
609642b
df24eff
 
 
 
 
 
 
ac37187
df24eff
 
 
 
 
 
9dbf189
df24eff
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python

import functools
import os
import pathlib

import cv2
import dlib
import gradio as gr
import huggingface_hub
import numpy as np
import pretrainedmodels
import torch
import torch.nn as nn
import torch.nn.functional as F

DESCRIPTION = '# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)'

print("Current directory:", os.getcwd())
print("Files in the current directory:", os.listdir('.'))

ssd_net = cv2.dnn.readNetFromCaffe('deploy.prototxt', 'res10_300x300_ssd_iter_140000.caffemodel')



def get_model(model_name='se_resnext50_32x4d',
              num_classes=101,
              pretrained='imagenet'):
    model = pretrainedmodels.__dict__[model_name](pretrained=pretrained)
    dim_feats = model.last_linear.in_features
    model.last_linear = nn.Linear(dim_feats, num_classes)
    model.avg_pool = nn.AdaptiveAvgPool2d(1)
    return model


def load_model(device):
    model = get_model(model_name='se_resnext50_32x4d', pretrained=None)
    path = huggingface_hub.hf_hub_download(
        'public-data/yu4u-age-estimation-pytorch', 'pretrained.pth')
    model.load_state_dict(torch.load(path))
    model = model.to(device)
    model.eval()
    return model


def load_image(path):
    image = cv2.imread(path)
    return image


def draw_label(image,
               point,
               label,
               font=cv2.FONT_HERSHEY_SIMPLEX,
               font_scale=0.8,
               thickness=1):
    size = cv2.getTextSize(label, font, font_scale, thickness)[0]
    x, y = point
    cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0),
                  cv2.FILLED)
    cv2.putText(image,
                label,
                point,
                font,
                font_scale, (255, 255, 255),
                thickness,
                lineType=cv2.LINE_AA)


def detect_faces_ssd(image):
    (h, w) = image.shape[:2]
    blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
    ssd_net.setInput(blob)
    detections = ssd_net.forward()
    faces = []
    
    # Loop over the detections
    for i in range(0, detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > 0.5:
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            faces.append(box.astype("int"))
    return faces



@torch.inference_mode()
def predict(image_path, model, device, margin=0.4, input_size=224):
    image = cv2.imread(image_path)
    image_h, image_w = image.shape[:2]

    # Detect faces using SSD detector
    faces_boxes = detect_faces_ssd(image)
    age_data = []

    if len(faces_boxes) > 0:
        for i, (startX, startY, endX, endY) in enumerate(faces_boxes):
            # Compute face region dimensions
            w = endX - startX
            h = endY - startY
            xw1 = max(int(startX - margin * w), 0)
            yw1 = max(int(startY - margin * h), 0)
            xw2 = min(int(endX + margin * w), image_w - 1)
            yw2 = min(int(endY + margin * h), image_h - 1)
            
            # Crop and resize face region
            face = cv2.resize(image[yw1:yw2 + 1, xw1:xw2 + 1], (input_size, input_size))
            
            # predict ages
            input_blob = torch.from_numpy(np.transpose(face.astype(np.float32), (2, 0, 1))).unsqueeze(0).to(device)
            output = F.softmax(model(input_blob), dim=-1).cpu().numpy()
            ages = np.arange(0, 101)
            predicted_age = (output * ages).sum(axis=-1).item()  # Convert to native Python datatype

            # draw results
            age_text = f'{int(predicted_age)}'
            age_data.append({
                'age': int(predicted_age),  # Ensure this is a native Python int, not numpy int64
                'text': age_text,
                'face_coordinates': (int(startX), int(startY))  # Convert to native Python datatype
            })
            
            # Optionally, draw bounding boxes and age labels on the image
            # cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2)
            # cv2.putText(image, age_text, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)

    return age_data


def main():
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    model = load_model(device)
    fn = functools.partial(predict, model=model, device=device)

    image_dir = pathlib.Path('sample_images')
    examples = [path.as_posix() for path in sorted(image_dir.glob('*.jpg'))]

    demo = gr.Interface(
        fn=fn,
        inputs=gr.inputs.Image(type="filepath"),
        outputs="json",
        examples=examples,
        title="Age Estimation",
        description=DESCRIPTION,
        cache_examples=os.getenv('CACHE_EXAMPLES') == '1'
    )

    demo.launch()

if __name__ == '__main__':
    main()