File size: 36,243 Bytes
ee0ec3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
#!/usr/bin/env python3
# This file is part of UDPipe 2 <http://github.com/ufal/udpipe>.
#
# Copyright 2020 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University in Prague, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import argparse
import os
import sys
import time
import warnings
import numpy as np
import tensorflow as tf
import ufal.chu_liu_edmonds
import udpipe2_dataset
import udpipe2_eval
__version__ = "2.1.1-dev"
# Use tf.compat.v1 if running with TF2. Only prediction is supported
# in this case, because we use tf.compat.opt.LazyAdamOptimizer, which
# is not available in TF2.
if not tf.__version__.startswith("1"):
tf = tf.compat.v1
# Disable TF warnings
tf.logging.set_verbosity(tf.logging.ERROR)
# Ignore warnings containing "is deprecated"
warnings.filterwarnings("ignore", message=".*is deprecated")
class UDPipe2:
METRICS = ["UPOS", "XPOS", "UFeats", "AllTags", "Lemmas", "UAS", "LAS", "CLAS", "MLAS", "BLEX"]
def __init__(self, threads, seed=42):
self.morphodita = None
# Create an empty graph and a session
graph = tf.Graph()
graph.seed = seed
self.session = tf.Session(graph=graph, config=tf.ConfigProto(inter_op_parallelism_threads=threads,
intra_op_parallelism_threads=threads,
allow_soft_placement=True))
def construct(self, args, train, devs, tests, predict_only):
num_words = len(train.factors[train.FORMS].words)
num_chars = len(train.factors[train.FORMS].alphabet)
num_tags = {tag: len(train.factors[train.FACTORS_MAP[tag]].words) for tag in args.tags}
num_deprels = len(train.factors[train.DEPREL].words)
with self.session.graph.as_default():
# Inputs
self.sentence_lens = tf.placeholder(tf.int32, [None])
self.word_ids = tf.placeholder(tf.int32, [None, None])
self.charseqs = tf.placeholder(tf.int32, [None, None])
self.charseq_lens = tf.placeholder(tf.int32, [None])
self.charseq_ids = tf.placeholder(tf.int32, [None, None])
if train.variants > 1: self.variants = tf.placeholder(tf.int32, [None])
if train.embeddings_size: self.embeddings = tf.placeholder(tf.float32, [None, None, train.embeddings_size])
self.tags = dict((tag, tf.placeholder(tf.int32, [None, None])) for tag in args.tags)
self.heads = tf.placeholder(tf.int32, [None, None])
self.deprels = tf.placeholder(tf.int32, [None, None])
self.is_training = tf.placeholder(tf.bool, [])
self.learning_rate = tf.placeholder(tf.float32, [])
# RNN Cell
if args.rnn_cell == "LSTM":
rnn_cell = tf.nn.rnn_cell.LSTMCell
elif args.rnn_cell == "GRU":
rnn_cell = tf.nn.rnn_cell.GRUCell
else:
raise ValueError("Unknown rnn_cell {}".format(args.rnn_cell))
# Word embeddings
inputs = []
if args.we_dim:
word_embeddings = tf.get_variable("word_embeddings", shape=[num_words, args.we_dim], dtype=tf.float32)
inputs.append(tf.nn.embedding_lookup(word_embeddings, self.word_ids))
# Character-level embeddings
character_embeddings = tf.get_variable("character_embeddings", shape=[num_chars, args.cle_dim], dtype=tf.float32)
characters_embedded = tf.nn.embedding_lookup(character_embeddings, self.charseqs)
characters_embedded = tf.layers.dropout(characters_embedded, rate=args.dropout, training=self.is_training)
_, (state_fwd, state_bwd) = tf.nn.bidirectional_dynamic_rnn(
tf.nn.rnn_cell.GRUCell(args.cle_dim), tf.nn.rnn_cell.GRUCell(args.cle_dim),
characters_embedded, sequence_length=self.charseq_lens, dtype=tf.float32)
cle = tf.concat([state_fwd, state_bwd], axis=1)
cle_inputs = tf.nn.embedding_lookup(cle, self.charseq_ids)
# If CLE dim is half WE dim, we add them together, which gives
# better results; otherwise we concatenate CLE and WE.
if 2 * args.cle_dim == args.we_dim:
inputs[-1] += cle_inputs
else:
inputs.append(cle_inputs)
# Variants
if train.variants > 1:
variant_embeddings = tf.get_variable("variant_embeddings", shape=[train.variants, args.variant_dim], dtype=tf.float32)
variant_embeddings = tf.nn.embedding_lookup(variant_embeddings, self.variants)
variant_embeddings = tf.expand_dims(variant_embeddings, axis=1)
variant_embeddings = tf.tile(variant_embeddings, [1, tf.shape(self.word_ids)[1], 1])
inputs.append(variant_embeddings)
# Contextualized embeddings
if train.embeddings_size:
inputs.append(self.embeddings)
# All inputs done
inputs = tf.concat(inputs, axis=2)
# Shared RNN layers
hidden_layer = tf.layers.dropout(inputs, rate=args.dropout, training=self.is_training)
for i in range(args.rnn_layers):
(hidden_layer_fwd, hidden_layer_bwd), _ = tf.nn.bidirectional_dynamic_rnn(
rnn_cell(args.rnn_cell_dim), rnn_cell(args.rnn_cell_dim),
hidden_layer, sequence_length=self.sentence_lens + 1, dtype=tf.float32,
scope="word-level-rnn-{}".format(i))
previous = hidden_layer
hidden_layer = tf.layers.dropout(hidden_layer_fwd + hidden_layer_bwd, rate=args.dropout, training=self.is_training)
if i: hidden_layer += previous
# Tagger
loss = 0
weights = tf.sequence_mask(self.sentence_lens, dtype=tf.float32)
weights_sum = tf.reduce_sum(weights)
self.predictions, self.predictions_logits = {}, {}
tag_hidden_layer = hidden_layer[:, 1:]
for i in range(args.rnn_layers_tagger):
(hidden_layer_fwd, hidden_layer_bwd), _ = tf.nn.bidirectional_dynamic_rnn(
rnn_cell(args.rnn_cell_dim), rnn_cell(args.rnn_cell_dim),
tag_hidden_layer, sequence_length=self.sentence_lens, dtype=tf.float32,
scope="word-level-rnn-tag-{}".format(i))
previous = tag_hidden_layer
tag_hidden_layer = tf.layers.dropout(hidden_layer_fwd + hidden_layer_bwd, rate=args.dropout, training=self.is_training)
if i: tag_hidden_layer += previous
for tag in args.tags:
tag_layer = tag_hidden_layer
for _ in range(args.tag_layers):
tag_layer += tf.layers.dropout(tf.layers.dense(tag_layer, args.rnn_cell_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
if tag == "LEMMAS": tag_layer = tf.concat([tag_layer, cle_inputs[:, 1:]], axis=2)
output_layer = tf.layers.dense(tag_layer, num_tags[tag])
self.predictions[tag] = tf.argmax(output_layer, axis=2, output_type=tf.int32)
self.predictions_logits[tag] = output_layer
if args.label_smoothing:
gold_labels = tf.one_hot(self.tags[tag], num_tags[tag]) * (1 - args.label_smoothing) + args.label_smoothing / num_tags[tag]
loss += tf.losses.softmax_cross_entropy(gold_labels, output_layer, weights=weights)
else:
loss += tf.losses.sparse_softmax_cross_entropy(self.tags[tag], output_layer, weights=weights)
# Parsing
if args.parse:
max_words = tf.reduce_max(self.sentence_lens)
if args.rnn_layers == 0:
parser_inputs = [inputs]
for tag in ["UPOS", "XPOS", "FEATS"]:
parser_inputs.append(tf.nn.embedding_lookup(tf.get_variable(tag + "_embeddings", shape=[num_tags[tag], 128], dtype=tf.float32),
tf.pad(self.predictions[tag], ((0, 0),(1, 0)), constant_values=2)))
parser_inputs = tf.concat(parser_inputs, axis=2)
hidden_layer = tf.layers.dropout(parser_inputs, rate=args.dropout, training=self.is_training)
for i in range(args.rnn_layers_parser):
(hidden_layer_fwd, hidden_layer_bwd), _ = tf.nn.bidirectional_dynamic_rnn(
rnn_cell(args.rnn_cell_dim), rnn_cell(args.rnn_cell_dim),
hidden_layer, sequence_length=self.sentence_lens + 1, dtype=tf.float32,
scope="word-level-rnn-parser-{}".format(i))
previous = hidden_layer
hidden_layer = tf.layers.dropout(hidden_layer_fwd + hidden_layer_bwd, rate=args.dropout, training=self.is_training)
if i: hidden_layer += previous
# Heads
head_deps = hidden_layer[:, 1:]
for _ in range(args.parser_layers):
head_deps += tf.layers.dropout(tf.layers.dense(head_deps, args.rnn_cell_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
head_roots = hidden_layer
for _ in range(args.parser_layers):
head_roots += tf.layers.dropout(tf.layers.dense(head_roots, args.rnn_cell_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
head_deps_bias = tf.get_variable("head_deps_bias", [args.rnn_cell_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
head_roots_bias = tf.get_variable("head_roots_bias", [args.rnn_cell_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
head_biaffine = tf.get_variable("head_biaffine", [args.rnn_cell_dim, args.rnn_cell_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
heads = tf.reshape(tf.matmul(tf.reshape(head_deps, [-1, args.rnn_cell_dim]) + head_deps_bias, head_biaffine),
[tf.shape(hidden_layer)[0], -1, args.rnn_cell_dim])
heads = tf.matmul(heads, head_roots + head_roots_bias, transpose_b=True)
self.heads_logs = tf.nn.log_softmax(heads)
if args.label_smoothing:
gold_labels = tf.one_hot(self.heads, max_words + 1) * (1 - args.label_smoothing)
gold_labels += args.label_smoothing / tf.to_float(max_words + 1)
loss += tf.losses.softmax_cross_entropy(gold_labels, heads, weights=weights)
else:
loss += tf.losses.sparse_softmax_cross_entropy(self.heads, heads, weights=weights)
# Deprels
self.deprel_hidden_layer = tf.identity(hidden_layer)
self.deprel_heads = tf.identity(self.heads)
deprel_deps = tf.layers.dropout(tf.layers.dense(self.deprel_hidden_layer[:, 1:], args.parser_deprel_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
for _ in range(args.parser_layers - 1):
deprel_deps += tf.layers.dropout(tf.layers.dense(deprel_deps, args.parser_deprel_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
deprel_indices = tf.stack([
tf.tile(tf.expand_dims(tf.range(tf.shape(self.deprel_heads)[0]), axis=1), multiples=[1, tf.shape(self.deprel_heads)[1]]),
self.deprel_heads], axis=2)
deprel_roots = tf.gather_nd(self.deprel_hidden_layer, deprel_indices, )
deprel_roots = tf.layers.dropout(tf.layers.dense(deprel_roots, args.parser_deprel_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
for _ in range(args.parser_layers - 1):
deprel_roots += tf.layers.dropout(tf.layers.dense(deprel_roots, args.parser_deprel_dim, activation=tf.nn.tanh), rate=args.dropout, training=self.is_training)
deprel_deps_bias = tf.get_variable("deprel_deps_bias", [args.parser_deprel_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
deprel_roots_bias = tf.get_variable("deprel_roots_bias", [args.parser_deprel_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
deprel_biaffine = tf.get_variable("deprel_biaffine", [args.parser_deprel_dim, num_deprels * args.parser_deprel_dim], dtype=tf.float32, initializer=tf.zeros_initializer)
deprels = tf.reshape(tf.matmul(tf.reshape(deprel_deps, [-1, args.parser_deprel_dim]) + deprel_deps_bias, deprel_biaffine),
[tf.shape(self.deprel_hidden_layer)[0], -1, num_deprels, args.parser_deprel_dim])
deprels = tf.squeeze(tf.matmul(deprels, tf.expand_dims(deprel_roots + deprel_roots_bias, axis=3)), axis=3)
self.predictions_deprel = tf.argmax(deprels, axis=2, output_type=tf.int32)
if args.label_smoothing:
gold_labels = tf.one_hot(self.deprels, num_deprels) * (1 - args.label_smoothing)
gold_labels += args.label_smoothing / num_deprels
loss += tf.losses.softmax_cross_entropy(gold_labels, deprels, weights=weights)
else:
loss += tf.losses.sparse_softmax_cross_entropy(self.deprels, deprels, weights=weights)
# Pretrain saver
self.saver = tf.train.Saver(max_to_keep=1)
if predict_only: return
# Training
self.global_step = tf.train.create_global_step()
if args.clip_gradient:
optimizer = tf.contrib.opt.LazyAdamOptimizer(learning_rate=self.learning_rate, beta2=args.beta_2)
gradients, variables = zip(*optimizer.compute_gradients(loss))
gradients, gradient_norm = tf.clip_by_global_norm(gradients, args.clip_gradient)
self.training = optimizer.apply_gradients(zip(gradients, variables), global_step=self.global_step)
else:
self.training = tf.contrib.opt.LazyAdamOptimizer(learning_rate=self.learning_rate, beta2=args.beta_2).minimize(loss, global_step=self.global_step)
# Summaries
summary_writer = tf.contrib.summary.create_file_writer(args.model, flush_millis=10 * 1000)
with summary_writer.as_default(), tf.contrib.summary.record_summaries_every_n_global_steps(100):
self.training_summaries = [
tf.contrib.summary.scalar("train/loss", loss),
tf.contrib.summary.scalar("train/lr", self.learning_rate)]
if args.clip_gradient:
self.training_summaries.append(tf.contrib.summary.scalar("train/gradient_norm", gradient_norm))
for tag in args.tags:
self.training_summaries.append(tf.contrib.summary.scalar(
"train/{}".format(tag),
tf.reduce_sum(tf.cast(tf.equal(self.tags[tag], self.predictions[tag]), tf.float32) * weights) /
weights_sum))
if args.parse:
heads_acc = tf.reduce_sum(tf.cast(tf.equal(self.heads, tf.argmax(heads, axis=-1, output_type=tf.int32)),
tf.float32) * weights) / weights_sum
self.training_summaries.extend([tf.contrib.summary.scalar("train/heads_acc", heads_acc)])
deprels_acc = tf.reduce_sum(tf.cast(tf.equal(self.deprels, tf.argmax(deprels, axis=-1, output_type=tf.int32)),
tf.float32) * weights) / weights_sum
self.training_summaries.extend([tf.contrib.summary.scalar("train/deprels_acc", deprels_acc)])
# Evaluation summaries
self.summary_writers = {"": summary_writer}
for dataset in devs + tests:
if dataset.label not in self.summary_writers:
self.summary_writers[dataset.label] = tf.contrib.summary.create_file_writer(
os.path.join(args.model, dataset.label), flush_millis=10 * 1000)
self.event = tf.placeholder(tf.string, [])
self.event_summaries = {}
for name, writer in self.summary_writers.items():
with writer.as_default():
self.event_summaries[name] = tf.contrib.summary.import_event(self.event)
self.summary_writers_close = [writer.close() for writer in self.summary_writers.values()]
# Initialize variables
self.session.run(tf.global_variables_initializer())
for summary_writer in self.summary_writers.values():
with summary_writer.as_default():
tf.contrib.summary.initialize(session=self.session)
def load(self, path, morphodita_dictionary=None):
# We use the following version instead of calling `self.saver.restore`,
# because it works even TF 2 is in Eager mode.
self.session.run(self.saver.saver_def.restore_op_name,
{self.saver.saver_def.filename_tensor_name: os.path.join(path, "weights")})
# Try loading also consistent feats table.
consistent_feats_table = os.path.join(path, "consistent_feats.table")
if os.path.exists(consistent_feats_table):
import gzip
with gzip.open(consistent_feats_table, "rb") as consistent_feats_table_file:
consistent_feats_table = np.load(consistent_feats_table_file)
with self.session.graph.as_default():
consistent_feats_table = tf.convert_to_tensor(consistent_feats_table, dtype=tf.float32)
self.predictions["FEATS"] = tf.argmax(
tf.nn.softmax(self.predictions_logits["FEATS"], axis=2) * tf.gather(consistent_feats_table, self.predictions["UPOS"]),
axis=2, output_type=tf.int32)
# Load MorphoDiTa if requested
if morphodita_dictionary:
import ufal.morphodita
self.morphodita = ufal.morphodita.Morpho.load(os.path.join(path, morphodita_dictionary))
assert "XPOS" in self.tags and "LEMMAS" in self.tags, "MorphoDiTa dictionary operates on XPOS and LEMMAS, which are not present."
def close_writers(self):
self.session.run(self.summary_writers_close)
def train_epoch(self, train, learning_rate, args):
batches, at_least_one_epoch = 0, False
while batches < args.min_epoch_batches:
while not train.epoch_finished():
sentence_lens, word_ids, charseq_ids, charseqs, charseq_lens = train.next_batch(args.batch_size)
if args.word_dropout:
mask = np.random.binomial(n=1, p=args.word_dropout, size=word_ids[train.FORMS].shape)
word_ids[train.FORMS] = (1 - mask) * word_ids[train.FORMS] + mask * train.factors[train.FORMS].words_map["<unk>"]
if args.char_dropout:
mask = np.random.binomial(n=1, p=args.char_dropout, size=charseqs[train.FORMS].shape)
charseqs[train.FORMS] = (1 - mask) * charseqs[train.FORMS] + mask * train.factors[train.FORMS].alphabet_map["<unk>"]
feeds = {self.is_training: True, self.learning_rate: learning_rate, self.sentence_lens: sentence_lens,
self.charseqs: charseqs[train.FORMS], self.charseq_lens: charseq_lens[train.FORMS],
self.word_ids: word_ids[train.FORMS], self.charseq_ids: charseq_ids[train.FORMS]}
if train.variants > 1:
feeds[self.variants] = word_ids[train.VARIANT]
if train.embeddings_size:
if args.word_dropout:
mask = np.random.binomial(n=1, p=args.word_dropout, size=[*word_ids[train.EMBEDDINGS].shape[:2], 1])
word_ids[train.EMBEDDINGS] *= (1 - mask)
feeds[self.embeddings] = word_ids[train.EMBEDDINGS]
for tag in args.tags: feeds[self.tags[tag]] = word_ids[train.FACTORS_MAP[tag]]
if args.parse:
feeds[self.heads] = word_ids[train.HEAD]
feeds[self.deprels] = word_ids[train.DEPREL]
self.session.run([self.training, self.training_summaries], feeds)
batches += 1
if at_least_one_epoch: break
at_least_one_epoch = True
def predict(self, dataset, evaluating, args):
import io
conllu, sentences = io.StringIO(), 0
while not dataset.epoch_finished():
sentence_lens, word_ids, charseq_ids, charseqs, charseq_lens = dataset.next_batch(args.batch_size)
feeds = {self.is_training: False, self.sentence_lens: sentence_lens,
self.charseqs: charseqs[dataset.FORMS], self.charseq_lens: charseq_lens[dataset.FORMS],
self.word_ids: word_ids[dataset.FORMS], self.charseq_ids: charseq_ids[dataset.FORMS]}
if dataset.variants > 1:
feeds[self.variants] = word_ids[dataset.VARIANT]
if dataset.embeddings_size:
feeds[self.embeddings] = word_ids[dataset.EMBEDDINGS]
if evaluating:
for tag in args.tags: feeds[self.tags[tag]] = word_ids[dataset.FACTORS_MAP[tag]]
if args.parse:
feeds[self.heads] = word_ids[dataset.HEAD]
feeds[self.deprels] = word_ids[dataset.DEPREL]
targets = [self.predictions]
if self.morphodita: targets.extend([self.predictions_logits["XPOS"], self.predictions_logits["LEMMAS"]])
if args.parse: targets.extend([self.heads_logs, self.deprel_hidden_layer])
predictions, *other_values = self.session.run(targets, feeds)
if self.morphodita: xpos_logits, lemma_logits, *other_values = other_values
if args.parse: prior_heads, deprel_hidden_layer, *other_values = other_values
if args.parse:
heads = np.zeros(prior_heads.shape[:2], dtype=np.int32)
for i in range(len(sentence_lens)):
padded_heads = np.pad(prior_heads[i][:sentence_lens[i], :sentence_lens[i] + 1].astype(np.float64),
((1, 0), (0, 0)), mode="constant")
if args.single_root:
padded_heads[:, 0] = np.nan
padded_heads[1 + np.argmax(prior_heads[i][:sentence_lens[i], 0]), 0] = 0
chosen_heads, _ = ufal.chu_liu_edmonds.chu_liu_edmonds(padded_heads)
heads[i, :sentence_lens[i]] = chosen_heads[1:]
deprels = self.session.run(self.predictions_deprel,
{self.is_training: False, self.deprel_hidden_layer: deprel_hidden_layer, self.deprel_heads: heads})
for i in range(len(sentence_lens)):
overrides = [None] * dataset.FACTORS
for tag in args.tags: overrides[dataset.FACTORS_MAP[tag]] = predictions[tag][i]
if self.morphodita:
self.disambiguate_with_morphodita(
dataset.factors[dataset.FORMS].strings[sentences][1:], dataset, xpos_logits[i], lemma_logits[i], overrides)
if args.parse:
overrides[dataset.HEAD] = heads[i]
overrides[dataset.DEPREL] = deprels[i]
dataset.write_sentence(conllu, sentences, overrides)
sentences += 1
return conllu.getvalue()
def disambiguate_with_morphodita(self, forms, dataset, tag_logits, lemma_logits, overrides):
import ufal.morphodita
tags_map = dataset.factors[dataset.XPOS].words_map
lemma_rules_map = dataset.factors[dataset.LEMMAS].words_map
overrides[dataset.XPOS] = overrides[dataset.XPOS].tolist()
overrides[dataset.LEMMAS] = overrides[dataset.LEMMAS].tolist()
analyses = ufal.morphodita.TaggedLemmas()
for i in range(len(forms)):
if self.morphodita.analyze(forms[i], self.morphodita.NO_GUESSER, analyses) < 0:
continue
if len(analyses) == 1:
overrides[dataset.XPOS][i] = analyses[0].tag
overrides[dataset.LEMMAS][i] = analyses[0].lemma
continue
lemmas = {}
for analysis in analyses:
tag_id = tags_map.get(analysis.tag, None)
if tag_id is None:
continue
stripped_lemma = self.morphodita.lemmaId(analysis.lemma)
stripped_lemma_info = lemmas.get(stripped_lemma, None)
if stripped_lemma_info is None:
lemmas[stripped_lemma] = analysis.lemma, tag_id
else:
full_lemma, best_tag_id = stripped_lemma_info
if tag_logits[i, tag_id] > tag_logits[i, best_tag_id]:
lemmas[stripped_lemma] = full_lemma, tag_id
if len(lemmas) == 1:
lemma, best_tag_id = next(iter(lemmas.values()))
overrides[dataset.XPOS][i] = best_tag_id
overrides[dataset.LEMMAS][i] = lemma
elif len(lemmas) > 1:
best_tag_id, best_unknownlemma_tag_id = None, None
for stripped_lemma, (full_lemma, tag_id) in lemmas.items():
lemma_rule = dataset._gen_lemma_rule(forms[i], stripped_lemma, dataset._lr_allow_copy)
lemma_rule_id = lemma_rules_map.get(lemma_rule, None)
if lemma_rule_id is None:
if best_unknownlemma_tag_id is None or tag_logits[i, tag_id] > tag_logits[i, best_unknownlemma_tag_id]:
best_unknownlemma_tag_id, best_unknownlemma = tag_id, full_lemma
else:
lemmatag_logits = lemma_logits[i, lemma_rule_id] + tag_logits[i, tag_id]
if best_tag_id is None or lemmatag_logits > best_lemmatag_logits:
best_tag_id, best_lemmatag_logits, best_lemma = tag_id, lemmatag_logits, full_lemma
if best_tag_id is None or (best_unknownlemma_tag_id is not None and tag_logits[i, best_unknownlemma_tag_id] > tag_logits[i, best_tag_id] + 0.5):
best_tag_id, best_lemma = best_unknownlemma_tag_id, best_unknownlemma
overrides[dataset.XPOS][i] = best_tag_id
overrides[dataset.LEMMAS][i] = best_lemma
def evaluate(self, dataset_name, dataset, args):
import io
conllu = self.predict(dataset.data, True, args)
metrics = udpipe2_eval.evaluate(dataset.gold, udpipe2_eval.load_conllu(io.StringIO(conllu), args.single_root))
event = [tf.Summary.Value(tag="{}/{}".format(dataset_name, metric), simple_value=metrics[metric].f1) for metric in self.METRICS]
event = tf.Event(summary=tf.Summary(value=event), step=self.session.run(self.global_step), wall_time=time.time()).SerializeToString()
self.session.run(self.event_summaries[dataset.label], {self.event: event})
if args.parse:
return (metrics["LAS"].f1 + metrics["MLAS"].f1 + metrics["BLEX"].f1) / 3., metrics
else:
return metrics["AllTags"].f1, metrics
@staticmethod
def argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument("model", type=str, help="Model path")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size.")
parser.add_argument("--beta_2", default=0.99, type=float, help="Adam beta 2")
parser.add_argument("--char_dropout", default=0, type=float, help="Character dropout")
parser.add_argument("--cle_dim", default=256, type=int, help="Character-level embedding dimension.")
parser.add_argument("--clip_gradient", default=2.0, type=float, help="Gradient clipping.")
parser.add_argument("--dev", default=[], nargs="+", type=str, help="Dev files.")
parser.add_argument("--dropout", default=0.5, type=float, help="Dropout")
parser.add_argument("--epochs", default="40:1e-3,20:1e-4", type=str, help="Epochs and learning rates.")
parser.add_argument("--exp", default=None, type=str, help="Experiment name.")
parser.add_argument("--label_smoothing", default=0.03, type=float, help="Label smoothing.")
parser.add_argument("--max_sentence_len", default=120, type=int, help="Max sentence length.")
parser.add_argument("--morphodita", default=None, type=str, help="MorphoDiTa dictionary used for PDT-C prediction.")
parser.add_argument("--min_epoch_batches", default=300, type=int, help="Minimum number of batches per epoch.")
parser.add_argument("--parse", default=1, type=int, help="Parse.")
parser.add_argument("--parser_layers", default=1, type=int, help="Parser layers.")
parser.add_argument("--parser_deprel_dim", default=128, type=int, help="Parser deprel dim.")
parser.add_argument("--predict", default=False, action="store_true", help="Only predict.")
parser.add_argument("--predict_input", default=None, type=str, help="Input to prediction.")
parser.add_argument("--predict_output", default=None, type=str, help="Output to prediction.")
parser.add_argument("--rnn_cell", default="LSTM", type=str, help="RNN cell type.")
parser.add_argument("--rnn_cell_dim", default=512, type=int, help="RNN cell dimension.")
parser.add_argument("--rnn_layers", default=2, type=int, help="RNN layers.")
parser.add_argument("--rnn_layers_parser", default=1, type=int, help="Parser RNN layers.")
parser.add_argument("--rnn_layers_tagger", default=0, type=int, help="Tagger RNN layers.")
parser.add_argument("--seed", default=42, type=int, help="Initial random seed.")
parser.add_argument("--single_root", default=1, type=int, help="Single root allowed only.")
parser.add_argument("--tags", default="UPOS,XPOS,FEATS,LEMMAS", type=str, help="Tags.")
parser.add_argument("--tag_layers", default=1, type=int, help="Additional tag layers.")
parser.add_argument("--test", default=[], nargs="+", type=str, help="Test files.")
parser.add_argument("--train", default=None, type=str, help="Trainig file.")
parser.add_argument("--threads", default=4, type=int, help="Maximum number of threads to use.")
parser.add_argument("--variant_dim", default=128, type=int, help="Variant embedding dimension.")
parser.add_argument("--we_dim", default=512, type=int, help="Word embedding dimension.")
parser.add_argument("--wembedding_model", default="bert-base-multilingual-uncased-last4", type=str, help="WEmbedding model.")
parser.add_argument("--word_dropout", default=0.2, type=float, help="Word dropout")
return parser
@staticmethod
def postprocess_arguments(args):
# Add option defaults if missing in `args`
args = UDPipe2.argument_parser().parse_args([args.model], namespace=args)
# Manual args post-processing
args.tags = args.tags.split(",")
args.epochs = [(int(epochs), float(lr)) for epochs, lr in (epochs_lr.split(":") for epochs_lr in args.epochs.split(","))]
if __name__ == "__main__":
import collections
import glob
import json
# Parse arguments
parser = UDPipe2.argument_parser()
args = parser.parse_args()
# Fix random seed
np.random.seed(args.seed)
if not args.predict:
# Create model dir and save the passed options
os.makedirs(args.model, exist_ok=True)
with open(os.path.join(args.model, "options.json"), mode="w") as options_file:
json.dump(vars(args), options_file, sort_keys=True)
else:
# Load saved options from the model
with open(os.path.join(args.model, "options.json"), mode="r") as options_file:
args = argparse.Namespace(**json.load(options_file))
parser.parse_args(namespace=args)
# Postprocess args
UDPipe2.postprocess_arguments(args)
# Load the data
devs, tests = [], []
EvaluationDataset = collections.namedtuple("EvaluationDataset", ["label", "data", "gold"])
if not args.predict:
train = udpipe2_dataset.UDPipe2Dataset(path=args.train, max_sentence_len=args.max_sentence_len, shuffle_batches=True,
embeddings=glob.glob("{}*.npz".format(args.train)))
train.save_mappings(os.path.join(args.model, "mappings.pickle"))
for sources, target in [(args.dev, devs), (args.test, tests)]:
for source in sources:
label, path = ("", source) if ":" not in source else source.split(":", maxsplit=1)
target.append(EvaluationDataset(
label,
udpipe2_dataset.UDPipe2Dataset(path=path, train=train, shuffle_batches=False,
embeddings=glob.glob("{}*.npz".format(path))),
udpipe2_eval.load_conllu_file(path, args.single_root)
))
else:
train = udpipe2_dataset.UDPipe2Dataset.load_mappings(os.path.join(args.model, "mappings.pickle"))
test = udpipe2_dataset.UDPipe2Dataset(path=args.predict_input, train=train, shuffle_batches=False,
embeddings=glob.glob("{}*.npz".format(args.predict_input)))
# Construct the network
network = UDPipe2(threads=args.threads, seed=args.seed)
network.construct(args, train, devs, tests, predict_only=args.predict)
if args.predict:
network.load(args.model, args.morphodita)
conllu = network.predict(test, False, args)
with open(args.predict_output, "w", encoding="utf-8") as output_file:
print(conllu, end="", file=output_file)
else:
log_files = [open(os.path.join(args.model, "log"), "w", encoding="utf-8"), sys.stderr]
for log_file in log_files:
for tag in args.tags + ["DEPREL"]:
print("{}: {}".format(tag, len(train.factors[train.FACTORS_MAP[tag]].words)), file=log_file, flush=True)
print("VARIANT: {}".format(train.variants), file=log_file, flush=True)
print("Parsing with args:", *["{}: {}".format(key, value) for key, value in sorted(vars(args).items())],
sep="\n", file=log_file, flush=True)
for i, (epochs, learning_rate) in enumerate(args.epochs):
for epoch in range(epochs):
network.train_epoch(train, learning_rate, args)
for dev in devs:
dev_accuracy, metrics = network.evaluate("dev", dev, args)
metrics_log = ", ".join(("{}: {:.2f}".format(metric, 100 * metrics[metric].f1) for metric in UDPipe2.METRICS))
for log_file in log_files:
print("Dev {} epoch {}, lr {}, {}".format(dev.label, epoch + 1, learning_rate, metrics_log), file=log_file, flush=True)
for test in tests:
test_accuracy, metrics = network.evaluate("test", test, args)
metrics_log = ", ".join(("{}: {:.2f}".format(metric, 100 * metrics[metric].f1) for metric in UDPipe2.METRICS))
for log_file in log_files:
print("Test {} epoch {}, lr {}, {}".format(test.label, epoch + 1, learning_rate, metrics_log), file=log_file, flush=True)
network.close_writers()
network.saver.save(network.session, os.path.join(args.model, "weights"), write_meta_graph=False)
|