File size: 20,458 Bytes
0e5da39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
# This file is part of UDPipe 2 <http://github.com/ufal/udpipe>.
#
# Copyright 2020 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University in Prague, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import io
import pickle
import re
import sys
import numpy as np
__version__ = "2.1.1-dev"
class UDPipe2Dataset:
FORMS = 0
LEMMAS = 1
UPOS = 2
XPOS = 3
FEATS = 4
HEAD = 5
DEPREL = 6
DEPS = 7
MISC = 8
FACTORS = 9
VARIANT = 9
EMBEDDINGS = 10
FACTORS_MAP = {"FORMS": FORMS, "LEMMAS": LEMMAS, "UPOS": UPOS, "XPOS": XPOS, "FEATS": FEATS,
"HEAD": HEAD, "DEPREL": DEPREL, "DEPS": DEPS, "MISC": MISC}
re_extras = re.compile(r"^#|^\d+-|^\d+\.")
re_variant = re.compile(r"^#\s*variant\s*=\s*(\S+)")
class _Factor:
ROOT = 2
def __init__(self, with_root, characters, train=None):
self.words_map = train.words_map if train else {'<pad>': 0, '<unk>': 1, '<root>': 2}
self.words = train.words if train else ['<pad>', '<unk>', '<root>']
self.word_ids = []
self.strings = []
self.with_root = with_root
self.characters = characters
if characters:
self.alphabet_map = train.alphabet_map if train else {'<pad>': 0, '<unk>': 1, '<root>': 2}
self.alphabet = train.alphabet if train else ['<pad>', '<unk>', '<root>']
self.charseqs_map = {'<pad>': 0, '<unk>': 1, '<root>': 2}
self.charseqs = [[0], [1], [2]]
self.charseq_ids = []
def __init__(self, path=None, text=None, embeddings=[], train=None, shuffle_batches=True,
override_variant=None, max_sentence_len=None, max_sentences=None):
# Create factors and other variables
self._factors = []
for f in range(self.FACTORS):
self._factors.append(self._Factor(f == self.FORMS, f == self.FORMS, train._factors[f] if train else None))
self._extras = []
form_dict = {}
self._lr_allow_copy = train._lr_allow_copy if train else None
lemma_dict_with_copy, lemma_dict_no_copy = {}, {}
self._variant_map = train._variant_map if train else {}
self._variants = []
# Load contextualized embeddings
if isinstance(embeddings, list) and all(isinstance(embedding, np.ndarray) for embedding in embeddings):
self._embeddings = embeddings
else:
self._embeddings = []
for embeddings_path in embeddings:
with np.load(embeddings_path, allow_pickle=True) as embeddings_file:
for i, (_, value) in enumerate(embeddings_file.items()):
if max_sentence_len: value = value[:max_sentence_len]
if i >= len(self._embeddings): self._embeddings.append(value)
else: self._embeddings[i] = np.concatenate([self._embeddings[i], value], axis=1)
assert i + 1 == len(self._embeddings)
self._embeddings_size = self._embeddings[0].shape[1] if self._embeddings else 0
# Load the sentences
with open(path, "r", encoding="utf-8") if path is not None else io.StringIO(text) as file:
in_sentence = False
variant = ""
for line in file:
line = line.rstrip("\r\n")
if line:
if self.re_extras.match(line):
variant_match = self.re_variant.match(line)
if variant_match:
variant = variant_match.group(1)
if in_sentence:
while len(self._extras) < len(self._factors[0].word_ids): self._extras.append([])
while len(self._extras[-1]) <= len(self._factors[0].word_ids[-1]) - self._factors[0].with_root:
self._extras[-1].append("")
else:
while len(self._extras) <= len(self._factors[0].word_ids): self._extras.append([])
if not len(self._extras[-1]): self._extras[-1].append("")
self._extras[-1][-1] += ("\n" if self._extras[-1][-1] else "") + line
continue
if max_sentence_len and in_sentence and len(self._factors[0].strings[-1]) - self._factors[0].with_root >= max_sentence_len:
continue
columns = line.split("\t")[1:]
for f in range(self.FACTORS):
factor = self._factors[f]
if not in_sentence:
if len(factor.word_ids): factor.word_ids[-1] = np.array(factor.word_ids[-1], np.int32)
factor.word_ids.append([])
factor.strings.append([])
if factor.characters: factor.charseq_ids.append([])
if factor.with_root:
factor.word_ids[-1].append(factor.ROOT)
factor.strings[-1].append(factor.words[factor.ROOT])
if factor.characters: factor.charseq_ids[-1].append(factor.ROOT)
word = columns[f]
factor.strings[-1].append(word)
# Preprocess word
if f == self.LEMMAS and self._lr_allow_copy is not None:
word = self._gen_lemma_rule(columns[self.FORMS], columns[self.LEMMAS], self._lr_allow_copy)
# Character-level information
if factor.characters:
if word not in factor.charseqs_map:
factor.charseqs_map[word] = len(factor.charseqs)
factor.charseqs.append([])
for c in word:
if c not in factor.alphabet_map:
if train:
c = '<unk>'
else:
factor.alphabet_map[c] = len(factor.alphabet)
factor.alphabet.append(c)
factor.charseqs[-1].append(factor.alphabet_map[c])
factor.charseq_ids[-1].append(factor.charseqs_map[word])
# Word-level information
if f == self.HEAD:
factor.word_ids[-1].append(int(word) if word != "_" else -1)
elif f == self.FORMS and not train:
factor.word_ids[-1].append(0)
form_dict[word] = form_dict.get(word, 0) + 1
elif f == self.LEMMAS and self._lr_allow_copy is None:
factor.word_ids[-1].append(0)
lemma_dict_with_copy[self._gen_lemma_rule(columns[self.FORMS], word, True)] = 1
lemma_dict_no_copy[self._gen_lemma_rule(columns[self.FORMS], word, False)] = 1
else:
if word not in factor.words_map:
if train:
word = '<unk>'
else:
factor.words_map[word] = len(factor.words)
factor.words.append(word)
factor.word_ids[-1].append(factor.words_map[word])
if not in_sentence:
if override_variant is not None: variant = override_variant
if (variant not in self._variant_map) and (not train):
self._variant_map[variant] = len(self._variant_map)
self._variants.append(self._variant_map.get(variant, 0))
in_sentence = True
else:
in_sentence = False
if max_sentences is not None and len(self._factors[self.FORMS].word_ids) >= max_sentences:
break
# Finalize forms if needed
if not train:
forms = self._factors[self.FORMS]
for i in range(len(forms.word_ids)):
for j in range(forms.with_root, len(forms.word_ids[i])):
word = "<unk>" if form_dict[forms.strings[i][j]] < 2 else forms.strings[i][j]
if word not in forms.words_map:
forms.words_map[word] = len(forms.words)
forms.words.append(word)
forms.word_ids[i][j] = forms.words_map[word]
# Finalize lemmas if needed
if self._lr_allow_copy is None:
self._lr_allow_copy = True if len(lemma_dict_with_copy) < len(lemma_dict_no_copy) else False
lemmas = self._factors[self.LEMMAS]
for i in range(len(lemmas.word_ids)):
for j in range(lemmas.with_root, len(lemmas.word_ids[i])):
word = self._gen_lemma_rule(self._factors[self.FORMS].strings[i][j - lemmas.with_root + self._factors[self.FORMS].with_root],
lemmas.strings[i][j], self._lr_allow_copy)
if word not in lemmas.words_map:
lemmas.words_map[word] = len(lemmas.words)
lemmas.words.append(word)
lemmas.word_ids[i][j] = lemmas.words_map[word]
# Compute sentence lengths
sentences = len(self._factors[self.FORMS].word_ids)
self._sentence_lens = np.zeros([sentences], np.int32)
for i in range(len(self._factors[self.FORMS].word_ids)):
self._sentence_lens[i] = len(self._factors[self.FORMS].word_ids[i]) - self._factors[self.FORMS].with_root
self._shuffle_batches = shuffle_batches
self._permutation = np.random.permutation(len(self._sentence_lens)) if self._shuffle_batches else np.arange(len(self._sentence_lens))
if self._embeddings:
assert sentences == len(self._embeddings)
for i in range(sentences):
assert self._sentence_lens[i] == len(self._embeddings[i]), "{} {} {}".format(i, self._sentence_lens[i], len(self._embeddings[i]))
@property
def sentence_lens(self):
return self._sentence_lens
@property
def factors(self):
return self._factors
@property
def variants(self):
return len(self._variant_map)
@property
def embeddings_size(self):
return self._embeddings_size
def save_mappings(self, path):
mappings = UDPipe2Dataset.__new__(UDPipe2Dataset)
for field in ["_lr_allow_copy", "_variant_map", "_embeddings_size"]:
setattr(mappings, field, getattr(self, field))
mappings._factors = []
for factor in self._factors:
mappings._factors.append(mappings._Factor(factor.with_root, factor.characters, factor))
with open(path, "wb") as mappings_file:
pickle.dump(mappings, mappings_file, protocol=3)
@staticmethod
def load_mappings(path):
with open(path, "rb") as mappings_file:
return pickle.load(mappings_file)
def epoch_finished(self):
if len(self._permutation) == 0:
self._permutation = np.random.permutation(len(self._sentence_lens)) if self._shuffle_batches else np.arange(len(self._sentence_lens))
return True
return False
def next_batch(self, batch_size, max_form_length=64):
batch_size = min(batch_size, len(self._permutation))
batch_perm = self._permutation[:batch_size]
self._permutation = self._permutation[batch_size:]
# General data
batch_sentence_lens = self._sentence_lens[batch_perm]
max_sentence_len = np.max(batch_sentence_lens)
# Word-level data
batch_word_ids = []
for factor in self._factors:
batch_word_ids.append(np.zeros([batch_size, max_sentence_len + factor.with_root], np.int32))
for i in range(batch_size):
batch_word_ids[-1][i, 0:batch_sentence_lens[i] + factor.with_root] = factor.word_ids[batch_perm[i]]
# Variants
batch_word_ids.append(np.zeros([batch_size], np.int32))
for i in range(batch_size):
batch_word_ids[-1][i] = self._variants[batch_perm[i]]
# Contextualized embeddings
if self._embeddings:
forms = self._factors[self.FORMS]
batch_word_ids.append(np.zeros([batch_size, max_sentence_len + forms.with_root, self.embeddings_size], np.float16))
for i in range(batch_size):
batch_word_ids[-1][i, forms.with_root:forms.with_root + len(self._embeddings[batch_perm[i]])] = \
self._embeddings[batch_perm[i]]
# Character-level data
batch_charseq_ids, batch_charseqs, batch_charseq_lens = [], [], []
for factor in self._factors:
if not factor.characters:
batch_charseq_ids.append([])
batch_charseqs.append([])
batch_charseq_lens.append([])
continue
batch_charseq_ids.append(np.zeros([batch_size, max_sentence_len + factor.with_root], np.int32))
charseqs_map = {}
charseqs = []
charseq_lens = []
for i in range(batch_size):
for j, charseq_id in enumerate(factor.charseq_ids[batch_perm[i]]):
if charseq_id not in charseqs_map:
charseqs_map[charseq_id] = len(charseqs)
charseqs.append(factor.charseqs[charseq_id][:max_form_length])
batch_charseq_ids[-1][i, j] = charseqs_map[charseq_id]
batch_charseq_lens.append(np.array([len(charseq) for charseq in charseqs], np.int32))
batch_charseqs.append(np.zeros([len(charseqs), np.max(batch_charseq_lens[-1])], np.int32))
for i in range(len(charseqs)):
batch_charseqs[-1][i, 0:len(charseqs[i])] = charseqs[i]
return self._sentence_lens[batch_perm], batch_word_ids, batch_charseq_ids, batch_charseqs, batch_charseq_lens
def write_sentence(self, output, index, overrides):
for i in range(self._sentence_lens[index] + 1):
# Start by writing extras
if index < len(self._extras) and i < len(self._extras[index]) and self._extras[index][i]:
print(self._extras[index][i], file=output)
if i == self._sentence_lens[index]: break
fields = []
fields.append(str(i + 1))
for f in range(self.FACTORS):
factor = self._factors[f]
offset = i + factor.with_root
field = factor.strings[index][offset]
# Overrides
if overrides is not None and f < len(overrides) and overrides[f] is not None:
override = overrides[f][offset]
if f == self.HEAD:
field = str(override) if override >= 0 else "_"
elif (f == self.LEMMAS or f == self.XPOS) and isinstance(override, str):
field = override
else:
field = factor.words[override]
if f == self.LEMMAS:
try:
field = self._apply_lemma_rule(fields[-1], field)
except:
print("Applying lemma rule failed for form '{}' and rule '{}', using the form as lemma".format(
fields[-1], field), file=sys.stderr)
field = fields[-1]
# Do not generate empty lemmas
field = field or fields[-1]
fields.append(field)
print("\t".join(fields), file=output)
print(file=output)
@staticmethod
def _min_edit_script(source, target, allow_copy):
a = [[(len(source) + len(target) + 1, None)] * (len(target) + 1) for _ in range(len(source) + 1)]
for i in range(0, len(source) + 1):
for j in range(0, len(target) + 1):
if i == 0 and j == 0:
a[i][j] = (0, "")
else:
if allow_copy and i and j and source[i - 1] == target[j - 1] and a[i-1][j-1][0] < a[i][j][0]:
a[i][j] = (a[i-1][j-1][0], a[i-1][j-1][1] + "→")
if i and a[i-1][j][0] < a[i][j][0]:
a[i][j] = (a[i-1][j][0] + 1, a[i-1][j][1] + "-")
if j and a[i][j-1][0] < a[i][j][0]:
a[i][j] = (a[i][j-1][0] + 1, a[i][j-1][1] + "+" + target[j - 1])
return a[-1][-1][1]
@staticmethod
def _gen_lemma_rule(form, lemma, allow_copy):
form = form.lower()
previous_case = -1
lemma_casing = ""
for i, c in enumerate(lemma):
case = "↑" if c.lower() != c else "↓"
if case != previous_case:
lemma_casing += "{}{}{}".format("¦" if lemma_casing else "", case, i if i <= len(lemma) // 2 else i - len(lemma))
previous_case = case
lemma = lemma.lower()
best, best_form, best_lemma = 0, 0, 0
for l in range(len(lemma)):
for f in range(len(form)):
cpl = 0
while f + cpl < len(form) and l + cpl < len(lemma) and form[f + cpl] == lemma[l + cpl]: cpl += 1
if cpl > best:
best = cpl
best_form = f
best_lemma = l
rule = lemma_casing + ";"
if not best:
rule += "a" + lemma
else:
rule += "d{}¦{}".format(
UDPipe2Dataset._min_edit_script(form[:best_form], lemma[:best_lemma], allow_copy),
UDPipe2Dataset._min_edit_script(form[best_form + best:], lemma[best_lemma + best:], allow_copy),
)
return rule
@staticmethod
def _apply_lemma_rule(form, lemma_rule):
casing, rule = lemma_rule.split(";", 1)
if rule.startswith("a"):
lemma = rule[1:]
else:
form = form.lower()
rules, rule_sources = rule[1:].split("¦"), []
assert len(rules) == 2
for rule in rules:
source, i = 0, 0
while i < len(rule):
if rule[i] == "→" or rule[i] == "-":
source += 1
else:
assert rule[i] == "+"
i += 1
i += 1
rule_sources.append(source)
try:
lemma, form_offset = "", 0
for i in range(2):
j, offset = 0, (0 if i == 0 else len(form) - rule_sources[1])
while j < len(rules[i]):
if rules[i][j] == "→":
lemma += form[offset]
offset += 1
elif rules[i][j] == "-":
offset += 1
else:
assert(rules[i][j] == "+")
lemma += rules[i][j + 1]
j += 1
j += 1
if i == 0:
lemma += form[rule_sources[0] : len(form) - rule_sources[1]]
except:
lemma = form
for rule in casing.split("¦"):
if rule == "↓0": continue # The lemma is lowercased initially
if not rule: continue # Empty lemma might generate empty casing rule
case, offset = rule[0], int(rule[1:])
lemma = lemma[:offset] + (lemma[offset:].upper() if case == "↑" else lemma[offset:].lower())
return lemma
|