File size: 20,458 Bytes
0e5da39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# This file is part of UDPipe 2 <http://github.com/ufal/udpipe>.
#
# Copyright 2020 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University in Prague, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

import io
import pickle
import re
import sys

import numpy as np

__version__ = "2.1.1-dev"


class UDPipe2Dataset:
    FORMS = 0
    LEMMAS = 1
    UPOS = 2
    XPOS = 3
    FEATS = 4
    HEAD = 5
    DEPREL = 6
    DEPS = 7
    MISC = 8
    FACTORS = 9
    VARIANT = 9
    EMBEDDINGS = 10

    FACTORS_MAP = {"FORMS": FORMS, "LEMMAS": LEMMAS, "UPOS": UPOS, "XPOS": XPOS, "FEATS": FEATS,
                   "HEAD": HEAD, "DEPREL": DEPREL, "DEPS": DEPS, "MISC": MISC}

    re_extras = re.compile(r"^#|^\d+-|^\d+\.")
    re_variant = re.compile(r"^#\s*variant\s*=\s*(\S+)")

    class _Factor:
        ROOT = 2
        def __init__(self, with_root, characters, train=None):
            self.words_map = train.words_map if train else {'<pad>': 0, '<unk>': 1, '<root>': 2}
            self.words = train.words if train else ['<pad>', '<unk>', '<root>']
            self.word_ids = []
            self.strings = []
            self.with_root = with_root
            self.characters = characters
            if characters:
                self.alphabet_map = train.alphabet_map if train else {'<pad>': 0, '<unk>': 1, '<root>': 2}
                self.alphabet = train.alphabet if train else ['<pad>', '<unk>', '<root>']
                self.charseqs_map = {'<pad>': 0, '<unk>': 1, '<root>': 2}
                self.charseqs = [[0], [1], [2]]
                self.charseq_ids = []

    def __init__(self, path=None, text=None, embeddings=[], train=None, shuffle_batches=True,
                 override_variant=None, max_sentence_len=None, max_sentences=None):
        # Create factors and other variables
        self._factors = []
        for f in range(self.FACTORS):
            self._factors.append(self._Factor(f == self.FORMS, f == self.FORMS, train._factors[f] if train else None))
        self._extras = []

        form_dict = {}

        self._lr_allow_copy = train._lr_allow_copy if train else None
        lemma_dict_with_copy, lemma_dict_no_copy = {}, {}

        self._variant_map = train._variant_map if train else {}
        self._variants = []

        # Load contextualized embeddings
        if isinstance(embeddings, list) and all(isinstance(embedding, np.ndarray) for embedding in embeddings):
            self._embeddings = embeddings
        else:
            self._embeddings = []
            for embeddings_path in embeddings:
                with np.load(embeddings_path, allow_pickle=True) as embeddings_file:
                    for i, (_, value) in enumerate(embeddings_file.items()):
                        if max_sentence_len: value = value[:max_sentence_len]
                        if i >= len(self._embeddings): self._embeddings.append(value)
                        else: self._embeddings[i] = np.concatenate([self._embeddings[i], value], axis=1)
                    assert i + 1 == len(self._embeddings)
        self._embeddings_size = self._embeddings[0].shape[1] if self._embeddings else 0

        # Load the sentences
        with open(path, "r", encoding="utf-8") if path is not None else io.StringIO(text) as file:
            in_sentence = False
            variant = ""
            for line in file:
                line = line.rstrip("\r\n")

                if line:
                    if self.re_extras.match(line):
                        variant_match = self.re_variant.match(line)
                        if variant_match:
                            variant = variant_match.group(1)
                        if in_sentence:
                            while len(self._extras) < len(self._factors[0].word_ids): self._extras.append([])
                            while len(self._extras[-1]) <= len(self._factors[0].word_ids[-1]) - self._factors[0].with_root:
                                self._extras[-1].append("")
                        else:
                            while len(self._extras) <= len(self._factors[0].word_ids): self._extras.append([])
                            if not len(self._extras[-1]): self._extras[-1].append("")
                        self._extras[-1][-1] += ("\n" if self._extras[-1][-1] else "") + line
                        continue

                    if max_sentence_len and in_sentence and len(self._factors[0].strings[-1]) - self._factors[0].with_root >= max_sentence_len:
                        continue

                    columns = line.split("\t")[1:]
                    for f in range(self.FACTORS):
                        factor = self._factors[f]
                        if not in_sentence:
                            if len(factor.word_ids): factor.word_ids[-1] = np.array(factor.word_ids[-1], np.int32)
                            factor.word_ids.append([])
                            factor.strings.append([])
                            if factor.characters: factor.charseq_ids.append([])
                            if factor.with_root:
                                factor.word_ids[-1].append(factor.ROOT)
                                factor.strings[-1].append(factor.words[factor.ROOT])
                                if factor.characters: factor.charseq_ids[-1].append(factor.ROOT)

                        word = columns[f]
                        factor.strings[-1].append(word)

                        # Preprocess word
                        if f == self.LEMMAS and self._lr_allow_copy is not None:
                            word = self._gen_lemma_rule(columns[self.FORMS], columns[self.LEMMAS], self._lr_allow_copy)

                        # Character-level information
                        if factor.characters:
                            if word not in factor.charseqs_map:
                                factor.charseqs_map[word] = len(factor.charseqs)
                                factor.charseqs.append([])
                                for c in word:
                                    if c not in factor.alphabet_map:
                                        if train:
                                            c = '<unk>'
                                        else:
                                            factor.alphabet_map[c] = len(factor.alphabet)
                                            factor.alphabet.append(c)
                                    factor.charseqs[-1].append(factor.alphabet_map[c])
                            factor.charseq_ids[-1].append(factor.charseqs_map[word])

                        # Word-level information
                        if f == self.HEAD:
                            factor.word_ids[-1].append(int(word) if word != "_" else -1)
                        elif f == self.FORMS and not train:
                            factor.word_ids[-1].append(0)
                            form_dict[word] = form_dict.get(word, 0) + 1
                        elif f == self.LEMMAS and self._lr_allow_copy is None:
                            factor.word_ids[-1].append(0)
                            lemma_dict_with_copy[self._gen_lemma_rule(columns[self.FORMS], word, True)] = 1
                            lemma_dict_no_copy[self._gen_lemma_rule(columns[self.FORMS], word, False)] = 1
                        else:
                            if word not in factor.words_map:
                                if train:
                                    word = '<unk>'
                                else:
                                    factor.words_map[word] = len(factor.words)
                                    factor.words.append(word)
                            factor.word_ids[-1].append(factor.words_map[word])
                    if not in_sentence:
                        if override_variant is not None: variant = override_variant
                        if (variant not in self._variant_map) and (not train):
                            self._variant_map[variant] = len(self._variant_map)
                        self._variants.append(self._variant_map.get(variant, 0))
                    in_sentence = True
                else:
                    in_sentence = False
                    if max_sentences is not None and len(self._factors[self.FORMS].word_ids) >= max_sentences:
                        break

        # Finalize forms if needed
        if not train:
            forms = self._factors[self.FORMS]
            for i in range(len(forms.word_ids)):
                for j in range(forms.with_root, len(forms.word_ids[i])):
                    word = "<unk>" if form_dict[forms.strings[i][j]] < 2 else forms.strings[i][j]
                    if word not in forms.words_map:
                        forms.words_map[word] = len(forms.words)
                        forms.words.append(word)
                    forms.word_ids[i][j] = forms.words_map[word]


        # Finalize lemmas if needed
        if self._lr_allow_copy is None:
            self._lr_allow_copy = True if len(lemma_dict_with_copy) < len(lemma_dict_no_copy) else False
            lemmas = self._factors[self.LEMMAS]
            for i in range(len(lemmas.word_ids)):
                for j in range(lemmas.with_root, len(lemmas.word_ids[i])):
                    word = self._gen_lemma_rule(self._factors[self.FORMS].strings[i][j - lemmas.with_root + self._factors[self.FORMS].with_root],
                                                lemmas.strings[i][j], self._lr_allow_copy)
                    if word not in lemmas.words_map:
                        lemmas.words_map[word] = len(lemmas.words)
                        lemmas.words.append(word)
                    lemmas.word_ids[i][j] = lemmas.words_map[word]

        # Compute sentence lengths
        sentences = len(self._factors[self.FORMS].word_ids)
        self._sentence_lens = np.zeros([sentences], np.int32)
        for i in range(len(self._factors[self.FORMS].word_ids)):
            self._sentence_lens[i] = len(self._factors[self.FORMS].word_ids[i]) - self._factors[self.FORMS].with_root

        self._shuffle_batches = shuffle_batches
        self._permutation = np.random.permutation(len(self._sentence_lens)) if self._shuffle_batches else np.arange(len(self._sentence_lens))

        if self._embeddings:
            assert sentences == len(self._embeddings)
            for i in range(sentences):
                assert self._sentence_lens[i] == len(self._embeddings[i]), "{} {} {}".format(i, self._sentence_lens[i], len(self._embeddings[i]))

    @property
    def sentence_lens(self):
        return self._sentence_lens

    @property
    def factors(self):
        return self._factors

    @property
    def variants(self):
        return len(self._variant_map)

    @property
    def embeddings_size(self):
        return self._embeddings_size

    def save_mappings(self, path):
        mappings = UDPipe2Dataset.__new__(UDPipe2Dataset)
        for field in ["_lr_allow_copy", "_variant_map", "_embeddings_size"]:
            setattr(mappings, field, getattr(self, field))
        mappings._factors = []
        for factor in self._factors:
            mappings._factors.append(mappings._Factor(factor.with_root, factor.characters, factor))

        with open(path, "wb") as mappings_file:
            pickle.dump(mappings, mappings_file, protocol=3)

    @staticmethod
    def load_mappings(path):
        with open(path, "rb") as mappings_file:
            return pickle.load(mappings_file)

    def epoch_finished(self):
        if len(self._permutation) == 0:
            self._permutation = np.random.permutation(len(self._sentence_lens)) if self._shuffle_batches else np.arange(len(self._sentence_lens))
            return True
        return False

    def next_batch(self, batch_size, max_form_length=64):
        batch_size = min(batch_size, len(self._permutation))
        batch_perm = self._permutation[:batch_size]
        self._permutation = self._permutation[batch_size:]

        # General data
        batch_sentence_lens = self._sentence_lens[batch_perm]
        max_sentence_len = np.max(batch_sentence_lens)

        # Word-level data
        batch_word_ids = []
        for factor in self._factors:
            batch_word_ids.append(np.zeros([batch_size, max_sentence_len + factor.with_root], np.int32))
            for i in range(batch_size):
                batch_word_ids[-1][i, 0:batch_sentence_lens[i] + factor.with_root] = factor.word_ids[batch_perm[i]]

        # Variants
        batch_word_ids.append(np.zeros([batch_size], np.int32))
        for i in range(batch_size):
            batch_word_ids[-1][i] = self._variants[batch_perm[i]]

        # Contextualized embeddings
        if self._embeddings:
            forms = self._factors[self.FORMS]
            batch_word_ids.append(np.zeros([batch_size, max_sentence_len + forms.with_root, self.embeddings_size], np.float16))
            for i in range(batch_size):
                batch_word_ids[-1][i, forms.with_root:forms.with_root + len(self._embeddings[batch_perm[i]])] = \
                    self._embeddings[batch_perm[i]]

        # Character-level data
        batch_charseq_ids, batch_charseqs, batch_charseq_lens = [], [], []
        for factor in self._factors:
            if not factor.characters:
                batch_charseq_ids.append([])
                batch_charseqs.append([])
                batch_charseq_lens.append([])
                continue

            batch_charseq_ids.append(np.zeros([batch_size, max_sentence_len + factor.with_root], np.int32))
            charseqs_map = {}
            charseqs = []
            charseq_lens = []
            for i in range(batch_size):
                for j, charseq_id in enumerate(factor.charseq_ids[batch_perm[i]]):
                    if charseq_id not in charseqs_map:
                        charseqs_map[charseq_id] = len(charseqs)
                        charseqs.append(factor.charseqs[charseq_id][:max_form_length])
                    batch_charseq_ids[-1][i, j] = charseqs_map[charseq_id]

            batch_charseq_lens.append(np.array([len(charseq) for charseq in charseqs], np.int32))
            batch_charseqs.append(np.zeros([len(charseqs), np.max(batch_charseq_lens[-1])], np.int32))
            for i in range(len(charseqs)):
                batch_charseqs[-1][i, 0:len(charseqs[i])] = charseqs[i]

        return self._sentence_lens[batch_perm], batch_word_ids, batch_charseq_ids, batch_charseqs, batch_charseq_lens

    def write_sentence(self, output, index, overrides):
        for i in range(self._sentence_lens[index] + 1):
            # Start by writing extras
            if index < len(self._extras) and i < len(self._extras[index]) and self._extras[index][i]:
                print(self._extras[index][i], file=output)
            if i == self._sentence_lens[index]: break

            fields = []
            fields.append(str(i + 1))
            for f in range(self.FACTORS):
                factor = self._factors[f]
                offset = i + factor.with_root

                field = factor.strings[index][offset]

                # Overrides
                if overrides is not None and f < len(overrides) and overrides[f] is not None:
                    override = overrides[f][offset]
                    if f == self.HEAD:
                        field = str(override) if override >= 0 else "_"
                    elif (f == self.LEMMAS or f == self.XPOS) and isinstance(override, str):
                        field = override
                    else:
                        field = factor.words[override]
                        if f == self.LEMMAS:
                            try:
                                field = self._apply_lemma_rule(fields[-1], field)
                            except:
                                print("Applying lemma rule failed for form '{}' and rule '{}', using the form as lemma".format(
                                    fields[-1], field), file=sys.stderr)
                                field = fields[-1]
                            # Do not generate empty lemmas
                            field = field or fields[-1]

                fields.append(field)

            print("\t".join(fields), file=output)
        print(file=output)

    @staticmethod
    def _min_edit_script(source, target, allow_copy):
        a = [[(len(source) + len(target) + 1, None)] * (len(target) + 1) for _ in range(len(source) + 1)]
        for i in range(0, len(source) + 1):
            for j in range(0, len(target) + 1):
                if i == 0 and j == 0:
                    a[i][j] = (0, "")
                else:
                    if allow_copy and i and j and source[i - 1] == target[j - 1] and a[i-1][j-1][0] < a[i][j][0]:
                        a[i][j] = (a[i-1][j-1][0], a[i-1][j-1][1] + "→")
                    if i and a[i-1][j][0] < a[i][j][0]:
                        a[i][j] = (a[i-1][j][0] + 1, a[i-1][j][1] + "-")
                    if j and a[i][j-1][0] < a[i][j][0]:
                        a[i][j] = (a[i][j-1][0] + 1, a[i][j-1][1] + "+" + target[j - 1])
        return a[-1][-1][1]

    @staticmethod
    def _gen_lemma_rule(form, lemma, allow_copy):
        form = form.lower()

        previous_case = -1
        lemma_casing = ""
        for i, c in enumerate(lemma):
            case = "↑" if c.lower() != c else "↓"
            if case != previous_case:
                lemma_casing += "{}{}{}".format("¦" if lemma_casing else "", case, i if i <= len(lemma) // 2 else i - len(lemma))
            previous_case = case
        lemma = lemma.lower()

        best, best_form, best_lemma = 0, 0, 0
        for l in range(len(lemma)):
            for f in range(len(form)):
                cpl = 0
                while f + cpl < len(form) and l + cpl < len(lemma) and form[f + cpl] == lemma[l + cpl]: cpl += 1
                if cpl > best:
                    best = cpl
                    best_form = f
                    best_lemma = l

        rule = lemma_casing + ";"
        if not best:
            rule += "a" + lemma
        else:
            rule += "d{}¦{}".format(
                UDPipe2Dataset._min_edit_script(form[:best_form], lemma[:best_lemma], allow_copy),
                UDPipe2Dataset._min_edit_script(form[best_form + best:], lemma[best_lemma + best:], allow_copy),
            )
        return rule

    @staticmethod
    def _apply_lemma_rule(form, lemma_rule):
        casing, rule = lemma_rule.split(";", 1)
        if rule.startswith("a"):
            lemma = rule[1:]
        else:
            form = form.lower()
            rules, rule_sources = rule[1:].split("¦"), []
            assert len(rules) == 2
            for rule in rules:
                source, i = 0, 0
                while i < len(rule):
                    if rule[i] == "→" or rule[i] == "-":
                        source += 1
                    else:
                        assert rule[i] == "+"
                        i += 1
                    i += 1
                rule_sources.append(source)

            try:
                lemma, form_offset = "", 0
                for i in range(2):
                    j, offset = 0, (0 if i == 0 else len(form) - rule_sources[1])
                    while j < len(rules[i]):
                        if rules[i][j] == "→":
                            lemma += form[offset]
                            offset += 1
                        elif rules[i][j] == "-":
                            offset += 1
                        else:
                            assert(rules[i][j] == "+")
                            lemma += rules[i][j + 1]
                            j += 1
                        j += 1
                    if i == 0:
                        lemma += form[rule_sources[0] : len(form) - rule_sources[1]]
            except:
                lemma = form

        for rule in casing.split("¦"):
            if rule == "↓0": continue # The lemma is lowercased initially
            if not rule: continue # Empty lemma might generate empty casing rule
            case, offset = rule[0], int(rule[1:])
            lemma = lemma[:offset] + (lemma[offset:].upper() if case == "↑" else lemma[offset:].lower())

        return lemma