Spaces:
Running
Running
File size: 14,469 Bytes
3f98f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import gradio as gr
from unstructured.partition.pdf import partition_pdf
import pymupdf
from PIL import Image
import numpy as np
import io
import pandas as pd
from langchain.text_splitter import RecursiveCharacterTextSplitter
import gc
import torch
import chromadb
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
from chromadb.utils.data_loaders import ImageLoader
from sentence_transformers import SentenceTransformer
from chromadb.utils import embedding_functions
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import base64
from langchain_community.llms import HuggingFaceEndpoint
from langchain import PromptTemplate
import spaces
if torch.cuda.is_available():
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
load_in_4bit=True,
)
def image_to_bytes(image):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format="PNG")
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
@spaces.GPU
def get_image_descriptions(images):
torch.cuda.empty_cache()
gc.collect()
descriptions = []
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
for img in images:
inputs = processor(prompt, img, return_tensors="pt").to("cuda:0")
output = vision_model.generate(**inputs, max_new_tokens=100)
descriptions.append(processor.decode(output[0], skip_special_tokens=True))
return descriptions
CSS = """
#table_col {background-color: rgb(33, 41, 54);}
"""
def extract_pdfs(docs, doc_collection):
if docs:
doc_collection = []
doc_collection.extend(docs)
return (
doc_collection,
gr.Tabs(selected=1),
pd.DataFrame([i.split("/")[-1] for i in list(docs)], columns=["Filename"]),
)
def extract_images(docs):
images = []
for doc_path in docs:
doc = pymupdf.open(doc_path) # open a document
for page_index in range(len(doc)): # iterate over pdf pages
page = doc[page_index] # get the page
image_list = page.get_images()
for image_index, img in enumerate(
image_list, start=1
): # enumerate the image list
xref = img[0] # get the XREF of the image
pix = pymupdf.Pixmap(doc, xref) # create a Pixmap
if pix.n - pix.alpha > 3: # CMYK: convert to RGB first
pix = pymupdf.Pixmap(pymupdf.csRGB, pix)
images.append(Image.open(io.BytesIO(pix.pil_tobytes("JPEG"))))
return images
# def get_vectordb(text, images, tables):
def get_vectordb(text, images):
client = chromadb.EphemeralClient()
loader = ImageLoader()
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="multi-qa-mpnet-base-dot-v1"
)
if "text_db" in [i.name for i in client.list_collections()]:
client.delete_collection("text_db")
if "image_db" in [i.name for i in client.list_collections()]:
client.delete_collection("image_db")
text_collection = client.get_or_create_collection(
name="text_db",
embedding_function=sentence_transformer_ef,
data_loader=loader,
)
image_collection = client.get_or_create_collection(
name="image_db",
embedding_function=sentence_transformer_ef,
data_loader=loader,
metadata={"hnsw:space": "cosine"},
)
image_descriptions = get_image_descriptions(images)
image_dict = [{"image": image_to_bytes(img) for img in images}]
image_collection.add(
ids=[str(i) for i in range(len(images))],
documents=image_descriptions,
metadatas=image_dict,
)
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=10,
)
docs = splitter.create_documents([text])
doc_texts = [i.page_content for i in docs]
text_collection.add(
ids=[str(i) for i in list(range(len(doc_texts)))], documents=doc_texts
)
return client
def extract_data_from_pdfs(docs, session, progress=gr.Progress()):
if len(docs) == 0:
raise gr.Error("No documents to process")
progress(0, "Extracting Images")
images = extract_images(docs)
progress(0.25, "Extracting Text")
strategy = "hi_res"
model_name = "yolox"
all_elements = []
for doc in docs:
elements = partition_pdf(
filename=doc,
strategy=strategy,
infer_table_structure=True,
model_name=model_name,
)
all_elements.extend(elements)
all_text = ""
# tables = []
prev = None
for i in all_elements:
meta = i.to_dict()
if meta["type"].lower() not in ["table", "figurecaption"]:
if meta["type"].lower() in ["listitem", "title"]:
all_text += "\n\n" + meta["text"] + "\n"
else:
all_text += meta["text"]
elif meta["type"] == "Table":
continue
# tables.append(meta["metadata"]["text_as_html"])
# html = "<br>".join(tables)
# display = "<h3>Sample Tables</h3>" + "<br>".join(tables[:2])
# html = gr.HTML(html)
# vectordb = get_vectordb(all_text, images, tables)
progress(0.5, "Generating image descriptions")
image_descriptions = "\n".join(get_image_descriptions(images))
progress(0.75, "Inserting data into vector database")
vectordb = get_vectordb(all_text, images)
progress(1, "Completed")
session["processed"] = True
return (
vectordb,
session,
gr.Row(visible=True),
all_text[:2000] + "...",
# display,
images[:2],
"<h1 style='text-align: center'>Completed<h1>",
# image_descriptions
)
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="multi-qa-mpnet-base-dot-v1"
)
def conversation(vectordb_client, msg, num_context, img_context, history):
text_collection = vectordb_client.get_collection(
"text_db", embedding_function=sentence_transformer_ef
)
image_collection = vectordb_client.get_collection(
"image_db", embedding_function=sentence_transformer_ef
)
results = text_collection.query(
query_texts=[msg], include=["documents"], n_results=num_context
)["documents"][0]
similar_images = image_collection.query(
query_texts=[msg],
include=["metadatas", "distances", "documents"],
n_results=img_context,
)
img_links = [i["image"] for i in similar_images["metadatas"][0]]
images_and_locs = [
Image.open(io.BytesIO(base64.b64decode(i[1])))
for i in zip(similar_images["distances"][0], img_links)
]
img_desc = "\n".join(similar_images["documents"][0])
if len(img_links) == 0:
img_desc = "No Images Are Provided"
template = """
Context:
{context}
Included Images:
{images}
Question:
{question}
Answer:
"""
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
context = "\n\n".join(results)
response = llm(prompt.format(context=context, question=msg, images=img_desc))
return history + [(msg, response)], context, images_and_locs
def check_validity_and_llm(session_states):
if session_states.get("processed", False) == True:
return gr.Tabs(selected=2)
raise gr.Error("Please extract data first")
def get_stats(vectordb):
eles = vectordb.get()
# words =
text_data = [f"Chunks: {len(eles)}", "HIII"]
return "\n".join(text_data), "", ""
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.4,
max_new_tokens=800,
)
with gr.Blocks(css=CSS) as demo:
vectordb = gr.State()
doc_collection = gr.State(value=[])
session_states = gr.State(value={})
gr.Markdown(
"""<h2><center>Multimodal PDF Chatbot</center></h2>
<h3><center><b>Interact With Your PDF Documents</b></center></h3>"""
)
gr.Markdown(
"""<center><h3><b>Note: </b> This application leverages advanced Retrieval-Augmented Generation (RAG) techniques to provide context-aware responses from your PDF documents</center><h3><br>
<center>Utilizing multimodal capabilities, this chatbot can interpret and answer queries based on both textual and visual information within your PDFs.</center>"""
)
gr.Markdown(
"""
<center><b>Warning: </b> Extracting text and images from your document and generating embeddings may take some time due to the use of OCR and multimodal LLMs for image description<center>
"""
)
with gr.Tabs() as tabs:
with gr.TabItem("Upload PDFs", id=0) as pdf_tab:
with gr.Row():
with gr.Column():
documents = gr.File(
file_count="multiple",
file_types=["pdf"],
interactive=True,
label="Upload your PDF file/s",
)
pdf_btn = gr.Button(value="Next", elem_id="button1")
with gr.TabItem("Extract Data", id=1) as preprocess:
with gr.Row():
with gr.Column():
back_p1 = gr.Button(value="Back")
with gr.Column():
embed = gr.Button(value="Extract Data")
with gr.Column():
next_p1 = gr.Button(value="Next")
with gr.Row() as row:
with gr.Column():
selected = gr.Dataframe(
interactive=False,
col_count=(1, "fixed"),
headers=["Selected Files"],
)
with gr.Column(variant="panel"):
prog = gr.HTML(
value="<h1 style='text-align: center'>Click the 'Extract' button to extract data from PDFs<h1>"
)
with gr.Accordion("See Parts of Extracted Data", open=False):
with gr.Column(visible=True) as sample_data:
with gr.Row():
with gr.Column():
ext_text = gr.Textbox(
label="Sample Extracted Text", lines=15
)
with gr.Column():
images = gr.Gallery(
label="Sample Extracted Images", columns=1, rows=2
)
# with gr.Row():
# image_desc = gr.Textbox(label="Image Descriptions", interactive=False)
# with gr.Row(variant="panel"):
# ext_tables = gr.HTML("<h3>Sample Tables</h3>", label="Extracted Tables")
# with gr.TabItem("Embeddings", id=3) as embed_tab:
# with gr.Row():
# with gr.Column():
# back_p2 = gr.Button(value="Back")
# with gr.Column():
# view_stats = gr.Button(value="View Stats")
# with gr.Column():
# next_p2 = gr.Button(value="Next")
# with gr.Row():
# with gr.Column():
# text_stats = gr.Textbox(label="Text Stats", interactive=False)
# with gr.Column():
# table_stats = gr.Textbox(label="Table Stats", interactive=False)
# with gr.Column():
# image_stats = gr.Textbox(label="Image Stats", interactive=False)
with gr.TabItem("Chat", id=2) as chat_tab:
with gr.Column():
choice = gr.Radio(
["chromaDB"],
value="chromaDB",
label="Vector Database",
interactive=True,
)
num_context = gr.Slider(
label="Number of text context elements",
minimum=1,
maximum=20,
step=1,
interactive=True,
value=3,
)
img_context = gr.Slider(
label="Number of image context elements",
minimum=1,
maximum=10,
step=1,
interactive=True,
value=2,
)
with gr.Row():
with gr.Column():
ret_images = gr.Gallery("Similar Images", columns=1, rows=2)
with gr.Column():
chatbot = gr.Chatbot(height=400)
with gr.Accordion("Text References", open=False):
with gr.Row():
text_context = gr.Textbox(interactive=False, lines=10)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your question here (e.g. 'What is this document about?')",
interactive=True,
container=True,
)
with gr.Row():
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
pdf_btn.click(
fn=extract_pdfs,
inputs=[documents, doc_collection],
outputs=[doc_collection, tabs, selected],
)
embed.click(
extract_data_from_pdfs,
inputs=[doc_collection, session_states],
outputs=[
vectordb,
session_states,
sample_data,
ext_text,
# ext_tables,
images,
prog,
# image_desc
],
)
submit_btn.click(
conversation,
[vectordb, msg, num_context, img_context, chatbot],
[chatbot, text_context, ret_images],
)
# view_stats.click(
# get_stats, [vectordb], outputs=[text_stats, table_stats, image_stats]
# )
# Page Navigation
back_p1.click(lambda: gr.Tabs(selected=0), None, tabs)
next_p1.click(check_validity_and_llm, session_states, tabs)
if __name__ == "__main__":
demo.launch(share=True)
|