Spaces:
Running
Running
File size: 4,666 Bytes
1434337 4c2a969 1434337 35f0167 1434337 4c2a969 35f0167 1434337 4c2a969 35f0167 4c2a969 1434337 4c2a969 1434337 4c2a969 1434337 4c2a969 1434337 4c2a969 1434337 4c2a969 1434337 4c2a969 35f0167 4c2a969 35f0167 1434337 4c2a969 35f0167 1434337 4c2a969 35f0167 4c2a969 35f0167 4c2a969 1434337 9abea4e 4c2a969 1434337 4c2a969 1434337 4c2a969 35f0167 1434337 35f0167 1434337 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import random
import time
import logging
from json import JSONDecodeError
import streamlit as st
import pandas as pd
import plotly.express as px
from app_utils.backend_utils import load_statements, query
from app_utils.frontend_utils import (
set_state_if_absent,
reset_results,
entailment_html_messages,
create_df_for_relevant_snippets,
)
from app_utils.config import RETRIEVER_TOP_K
def main():
statements = load_statements()
# Persistent state
set_state_if_absent("statement", "Elvis Presley is alive")
set_state_if_absent("answer", "")
set_state_if_absent("results", None)
set_state_if_absent("raw_json", None)
set_state_if_absent("random_statement_requested", False)
st.write("# Fact checking ๐ธ Rocks!")
st.write()
st.markdown(
"""
##### Enter a factual statement about [Rock music](https://en.wikipedia.org/wiki/List_of_mainstream_rock_performers) and let the AI check it out for you...
"""
)
# Search bar
statement = st.text_input(
"", value=st.session_state.statement, max_chars=100, on_change=reset_results
)
col1, col2 = st.columns(2)
col1.markdown(
"<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True
)
col2.markdown(
"<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True
)
# Run button
run_pressed = col1.button("Run")
# Random statement button
if col2.button("Random statement"):
reset_results()
statement = random.choice(statements)
# Avoid picking the same statement twice (the change is not visible on the UI)
while statement == st.session_state.statement:
statement = random.choice(statements)
st.session_state.statement = statement
st.session_state.random_statement_requested = True
# Re-runs the script setting the random statement as the textbox value
# Unfortunately necessary as the Random statement button is _below_ the textbox
# Adapted for Streamlit>=1.12
raise st.runtime.scriptrunner.script_runner.RerunException(
st.runtime.scriptrunner.script_requests.RerunData("")
)
else:
st.session_state.random_statement_requested = False
run_query = (
run_pressed or statement != st.session_state.statement
) and not st.session_state.random_statement_requested
# Get results for query
if run_query and statement:
time_start = time.time()
reset_results()
st.session_state.statement = statement
with st.spinner("๐ง Performing neural search on documents..."):
try:
st.session_state.results = query(statement, RETRIEVER_TOP_K)
print(query)
time_end = time.time()
print(time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()))
print(f"elapsed time: {time_end - time_start}")
except JSONDecodeError as je:
st.error(
"๐ An error occurred reading the results. Is the document store working?"
)
return
except Exception as e:
logging.exception(e)
st.error("๐ An error occurred during the request.")
return
# Display results
if st.session_state.results:
results = st.session_state.results
docs, agg_entailment_info = results["documents"], results["agg_entailment_info"]
# show different messages depending on entailment results
max_key = max(agg_entailment_info, key=agg_entailment_info.get)
message = entailment_html_messages[max_key]
st.markdown(f"<br/><h4>{message}</h4>", unsafe_allow_html=True)
st.markdown(f"###### Aggregate entailment information:")
col1, col2 = st.columns([2, 1])
df_agg_entailment_info = pd.DataFrame([results["agg_entailment_info"]])
fig = px.scatter_ternary(
df_agg_entailment_info,
a="contradiction",
b="neutral",
c="entailment",
size="contradiction",
)
with col1:
st.plotly_chart(fig, use_container_width=True)
with col2:
st.write(results["agg_entailment_info"])
st.markdown(f"###### Relevant snippets:")
df, urls = create_df_for_relevant_snippets(docs)
st.dataframe(df)
str_wiki_pages = "Wikipedia source pages: "
for doc, url in urls.items():
str_wiki_pages += f"[{doc}]({url}) "
st.markdown(str_wiki_pages)
main()
|