Spaces:
Sleeping
Sleeping
File size: 26,398 Bytes
32fbd07 c3c241a 32fbd07 25f0e74 32fbd07 25f0e74 3533dd6 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 5d90238 32fbd07 c3c241a 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 3533dd6 32fbd07 c3c241a 32fbd07 3533dd6 32fbd07 c3c241a 32fbd07 c3c241a 32fbd07 c3c241a 32fbd07 7504a25 32fbd07 7504a25 5d90238 32fbd07 7504a25 32fbd07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 |
import json
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import os
import numpy as np
# move to consts
buckets_age=['teens','twenties', 'thirties', 'fourties', 'fifties', 'sixties', 'seventies', 'eighties', 'nineties']
buckets_gender=["male", "female"]
def load_bigos_analyzer_report(fp:str)->dict:
with open(fp, 'r') as f:
data = json.load(f)
return data
def num_of_samples_per_split(dataset_hf):
# input - huggingface dataset object
# output - dictionary with statistics about number of samples per split
out_dict = {}
# number of samples per subset and split
metric = "samples"
print("Calculating {}".format(metric))
for split in dataset_hf.keys():
samples = dataset_hf[split].num_rows
##print(split, samples)
out_dict[split] = samples
# add number of samples for all splits
out_dict["all_splits"] = sum(out_dict.values())
return out_dict
def total_audio_duration_per_split(dataset_hf):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "audio[h]"
print("Calculating {}".format(metric))
for split in dataset_hf.keys():
#sampling_rate = dataset_hf[split]["sampling_rate"][0]
#audio_total_length_samples = 0
#audio_total_length_samples = sum(len(audio_file["array"]) for audio_file in dataset_hf["test"]["audio"])
audio_total_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
audio_total_length_hours = round(audio_total_length_seconds / 3600,2)
out_dict[split] = audio_total_length_hours
#print(split, audio_total_length_hours)
# add number of samples for all splits
out_dict["all_splits"] = sum(out_dict.values())
return out_dict
def average_audio_duration_per_split(dataset_hf):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "average_audio_duration[s]"
print("Calculating {}".format(metric))
samples_all=0
audio_length_total_seconds=0
for split in dataset_hf.keys():
#sampling_rate = dataset_hf[split]["sampling_rate"][0]
#audio_total_length_samples = 0
#audio_total_length_samples = sum(len(audio_file["array"]) for audio_file in dataset_hf["test"]["audio"])
audio_length_split_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
audio_length_total_seconds += audio_length_split_seconds
samples_split = len(dataset_hf[split]["audio_duration_seconds"])
samples_all += samples_split
audio_average_length_seconds = round(audio_length_split_seconds / samples_split,2)
out_dict[split] = audio_average_length_seconds
#print(split, audio_total_length_hours)
# add number of samples for all splits
out_dict["all_splits"] = round(audio_length_total_seconds / samples_all,2)
return out_dict
def average_utterance_length_chars_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about average utterance length per split
out_dict = {}
metric = "average_utterance_length[chars]"
print("Calculating {}".format(metric))
chars_all=0
samples_all=0
for split in dataset_hf.keys():
# extract speakers from file_id
if (split=="test" and dataset_hf_secret is not None):
utts_split = dataset_hf_secret[split]["ref_orig"]
else:
utts_split = dataset_hf[split]["ref_orig"]
words_split = " ".join(utts_split).split(" ")
chars_split = " ".join(words_split)
chars_split_count = len(chars_split)
chars_all += chars_split_count
samples_split = len(utts_split)
samples_all += samples_split
#print(split, chars_all_count)
out_dict[split] = round(chars_split_count/samples_split, 2)
# add number of samples for all splits
out_dict["all_splits"] = round(chars_all/samples_all, 2)
return out_dict
def average_utterance_length_words_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about average utterance length per split
out_dict = {}
metric = "average_utterance_length[words]"
print("Calculating {}".format(metric))
words_all=0
samples_all=0
for split in dataset_hf.keys():
# extract speakers from file_id
if (split=="test" and dataset_hf_secret is not None):
utts_split = dataset_hf_secret[split]["ref_orig"]
else:
utts_split = dataset_hf[split]["ref_orig"]
words_split_count = len(" ".join(utts_split).split(" "))
words_all += words_split_count
samples_split = len(utts_split)
samples_all += samples_split
#print(split, chars_all_count)
out_dict[split] = round(words_split_count/samples_split , 2)
# add number of samples for all splits
out_dict["all_splits"] = round(words_all/samples_all, 2)
return out_dict
def speakers_per_split(dataset_hf):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "speakers"
print("Calculating {}".format(metric))
for split in dataset_hf.keys():
# extract speakers from file_id
speakers_ids_all = [str(fileid).split("-")[4] for fileid in dataset_hf[split]["audioname"]]
speakers_ids_uniq = list(set(speakers_ids_all))
speakers_count = len(speakers_ids_uniq)
#print(split, speakers_count)
out_dict[split] = speakers_count
# add number of samples for all splits
out_dict["all_splits"] = sum(out_dict.values())
return out_dict
def uniq_utts_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "utts_unique"
print("Calculating {}".format(metric))
utts_all = []
for split in dataset_hf.keys():
# extract speakers from file_id
if (split == "test" and dataset_hf_secret is not None):
utts_split = dataset_hf_secret[split]["ref_orig"]
else:
utts_split = dataset_hf[split]["ref_orig"]
utts_all = utts_all + utts_split
utts_uniq = list(set(utts_split))
utts_uniq_count = len(utts_uniq)
#print(split, utts_uniq_count)
out_dict[split] = utts_uniq_count
# add number of samples for all splits
out_dict["all_splits"] = len(list(set(utts_all)))
return out_dict,utts_all
def words_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "words"
print("Calculating {}".format(metric))
for split in dataset_hf.keys():
# extract speakers from file_id
if (split == "test" and dataset_hf_secret is not None):
utts_all = dataset_hf_secret[split]["ref_orig"]
else:
utts_all = dataset_hf[split]["ref_orig"]
utts_lenghts = [len(utt.split(" ")) for utt in utts_all]
words_all_count = sum(utts_lenghts)
#print(split, words_all_count)
out_dict[split] = words_all_count
# add number of samples for all splits
out_dict["all_splits"] = sum(out_dict.values())
return out_dict
def uniq_words_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
out_words_list = []
metric = "words_unique"
print("Calculating {}".format(metric))
for split in dataset_hf.keys():
# extract speakers from file_id
if (split == "test" and dataset_hf_secret is not None):
utts_all = dataset_hf_secret[split]["ref_orig"]
else:
utts_all = dataset_hf[split]["ref_orig"]
words_all = " ".join(utts_all).split(" ")
words_uniq = list(set(words_all))
out_words_list = out_words_list + words_uniq
words_uniq_count = len(words_uniq)
#print(split, words_uniq_count)
out_dict[split] = words_uniq_count
# add number of samples for all splits
out_words_uniq = list(set((out_words_list)))
out_words_uniq_count = len(out_words_uniq)
out_dict["all_splits"] = out_words_uniq_count
#print("all", out_words_uniq_count)
return out_dict, out_words_uniq
def chars_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "chars"
print("Calculating {}".format(metric))
for split in dataset_hf.keys():
# extract speakers from file_id
if (split=="test" and dataset_hf_secret is not None):
utts_all = dataset_hf_secret[split]["ref_orig"]
else:
utts_all = dataset_hf[split]["ref_orig"]
words_all = " ".join(utts_all).split(" ")
chars_all = " ".join(words_all)
chars_all_count = len(chars_all)
#print(split, chars_all_count)
out_dict[split] = chars_all_count
# add number of samples for all splits
out_dict["all_splits"] = sum(out_dict.values())
return out_dict
def uniq_chars_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
out_chars_list = []
metric = "chars_unique"
print("Calculating {}".format(metric))
for split in dataset_hf.keys():
# extract speakers from file_id
if(split == "test" and dataset_hf_secret is not None):
utts_all = dataset_hf_secret[split]["ref_orig"]
else:
utts_all = dataset_hf[split]["ref_orig"]
words_all = " ".join(utts_all).split(" ")
words_uniq = list(set(words_all))
chars_uniq = list(set("".join(words_uniq)))
chars_uniq_count = len(chars_uniq) + 1
#print(split, chars_uniq_count)
out_dict[split] = chars_uniq_count
out_chars_list = out_chars_list + chars_uniq
# add number of samples for all splits
out_chars_uniq = list(set((out_chars_list)))
out_chars_uniq_count = len(out_chars_uniq)
out_dict["all_splits"] = out_chars_uniq_count
#print("all", out_chars_uniq_count)
return out_dict, out_chars_uniq
def meta_cov_per_split(dataset_hf, meta_field):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
no_meta=False
# TODO move to config
if meta_field == 'speaker_age':
buckets = buckets_age
if meta_field == 'speaker_gender':
buckets = buckets_gender
out_dict = {}
metric = "meta_cov_" + meta_field
print("Calculating {}".format(metric))
meta_info_all = 0
meta_info_not_null_all = 0
for split in dataset_hf.keys():
# extract speakers from file_id
meta_info = dataset_hf[split][meta_field]
meta_info_count = len(meta_info)
meta_info_all += meta_info_count
# calculate coverage
meta_info_not_null_count = len([x for x in meta_info if x != "N/A"])
if meta_info_not_null_count == 0:
out_dict[split] = "N/A"
continue
meta_info_not_null_all += meta_info_not_null_count
meta_info_coverage = round(meta_info_not_null_count / meta_info_count * 100, 2)
out_dict[split] = meta_info_coverage
if (meta_info_not_null_all == 0):
out_dict["all_splits"] = "N/A"
else:
out_dict["all_splits"] = round(meta_info_not_null_all/meta_info_all * 100,2 )
return out_dict
def speech_rate_words_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "words_per_second"
print("Calculating {}".format(metric))
words_all_count = 0
audio_total_length_seconds = 0
for split in dataset_hf.keys():
# extract speakers from file_id
if (split == "test" and dataset_hf_secret is not None):
utts_split = dataset_hf_secret[split]["ref_orig"]
else:
utts_split = dataset_hf[split]["ref_orig"]
words_split = " ".join(utts_split).split(" ")
words_split_count = len(words_split)
words_all_count += words_split_count
audio_split_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
audio_total_length_seconds += audio_split_length_seconds
speech_rate = round(words_split_count / audio_split_length_seconds, 2)
out_dict[split] = speech_rate
out_dict["all_splits"] = round(words_all_count / audio_total_length_seconds, 2)
return out_dict
def speech_rate_chars_per_split(dataset_hf, dataset_hf_secret):
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "chars_per_second"
print("Calculating {}".format(metric))
chars_all_count = 0
audio_total_length_seconds = 0
for split in dataset_hf.keys():
# extract speakers from file_id
if (split == "test" and dataset_hf_secret is not None):
utts_split = dataset_hf_secret[split]["ref_orig"]
else:
utts_split = dataset_hf[split]["ref_orig"]
words_split = " ".join(utts_split).split(" ")
chars_split_count = len("".join(words_split))
chars_all_count += chars_split_count
audio_split_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
audio_total_length_seconds += audio_split_length_seconds
speech_rate = round(chars_split_count / audio_split_length_seconds, 2)
out_dict[split] = speech_rate
out_dict["all_splits"] = round(chars_all_count / audio_total_length_seconds, 2)
return out_dict
# distribution of speaker age
def meta_distribution_text(dataset_hf, meta_field):
no_meta=False
if meta_field == 'speaker_age':
buckets = buckets_age
if meta_field == 'speaker_gender':
buckets = buckets_gender
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict = {}
metric = "distribution_" + meta_field
print("Calculating {}".format(metric))
values_count_total = {}
for bucket in buckets:
values_count_total[bucket]=0
for split in dataset_hf.keys():
out_dict[split] = {}
# extract speakers from file_id
meta_info = dataset_hf[split][meta_field]
meta_info_not_null = [x for x in meta_info if x != "N/A"]
if len(meta_info_not_null) == 0:
out_dict[split]="N/A"
no_meta=True
continue
for bucket in buckets:
values_count = meta_info_not_null.count(bucket)
values_count_total[bucket] += values_count
out_dict[split][bucket] = round(values_count/len(meta_info_not_null),2)
#print(split, out_dict[split])
if (no_meta):
out_dict["all_splits"] = "N/A"
return out_dict
out_dict["all_splits"] = {}
# calculate total number of samples in values_count_total
for bucket in buckets:
total_samples = sum(values_count_total.values())
out_dict["all_splits"][bucket] = round(values_count_total[bucket]/total_samples,2)
return out_dict
def recordings_per_speaker(dataset_hf):
recordings_per_speaker_stats_dict = {}
# input - huggingface dataset object
# output - dictionary with statistics about audio duration per split
out_dict_stats = {}
out_dict_contents = {}
metric = "recordings_per_speaker"
print("Calculating {}".format(metric))
recordings_per_speaker_stats_dict_all = {}
recordings_total=0
speakers_total = 0
for split in dataset_hf.keys():
# extract speakers from file_id
audiopaths = dataset_hf[split]["audioname"]
speaker_prefixes = [str(fileid).split("-")[0:5] for fileid in audiopaths]
speakers_dict_split = {}
# create dictionary with list of audio paths matching speaker prefix
# Create initial dictionary keys from speaker prefixes
for speaker_prefix in speaker_prefixes:
speaker_prefix_str = "-".join(speaker_prefix)
speakers_dict_split[speaker_prefix_str] = []
# Populate the dictionary with matching audio paths
for audio_path in audiopaths:
for speaker_prefix_str in speakers_dict_split.keys():
if speaker_prefix_str in audio_path:
speakers_dict_split[speaker_prefix_str].append(audio_path)
# iterate of speaker_dict prefixes and calculate number of recordings per speaker.
recordings_per_speaker_stats_dict_split = {}
for speaker_prefix_str in speakers_dict_split.keys():
recordings_per_speaker_stats_dict_split[speaker_prefix_str] = len(speakers_dict_split[speaker_prefix_str])
out_dict_contents[split] = {}
out_dict_contents[split] = recordings_per_speaker_stats_dict_split
# use recordings_per_speaker_stats to calculate statistics like min, max, avg, median, std
out_dict_stats[split] = {}
speakers_split = len(list(recordings_per_speaker_stats_dict_split.keys()))
speakers_total += speakers_split
recordings_split = len(audiopaths)
recordings_total += recordings_split
average_recordings_per_speaker = round( recordings_split / speakers_split,2)
out_dict_stats[split]["average"] = average_recordings_per_speaker
out_dict_stats[split]["std"] = round(np.std(list(recordings_per_speaker_stats_dict_split.values())),2)
out_dict_stats[split]["median"] = np.median(list(recordings_per_speaker_stats_dict_split.values()))
out_dict_stats[split]["min"] = min(recordings_per_speaker_stats_dict_split.values())
out_dict_stats[split]["max"] = max(recordings_per_speaker_stats_dict_split.values())
recordings_per_speaker_stats_dict_all = recordings_per_speaker_stats_dict_all | recordings_per_speaker_stats_dict_split
# add number of samples for all splits
average_recordings_per_speaker_all = round( recordings_total / speakers_total , 2)
out_dict_stats["all_splits"] = {}
out_dict_stats["all_splits"]["average"] = average_recordings_per_speaker_all
out_dict_stats["all_splits"]["std"] = round(np.std(list(recordings_per_speaker_stats_dict_all.values())),2)
out_dict_stats["all_splits"]["median"] = np.median(list(recordings_per_speaker_stats_dict_all.values()))
out_dict_stats["all_splits"]["min"] = min(recordings_per_speaker_stats_dict_all.values())
out_dict_stats["all_splits"]["max"] = max(recordings_per_speaker_stats_dict_all.values())
out_dict_contents["all_splits"] = recordings_per_speaker_stats_dict_all
return out_dict_stats, out_dict_contents
def meta_distribution_bar_plot(dataset_hf, output_dir, dimension = "speaker_gender"):
pass
def meta_distribution_violin_plot(dataset_hf, output_dir, metric = "audio_duration_seconds", dimension = "speaker_gender"):
# input - huggingface dataset object
# output - figure with distribution of audio duration per gender
out_dict = {}
print("Generating violin plat for metric {} for dimension {}".format(metric, dimension))
# drop samples for which dimension column values are equal to "N/A"
for split in dataset_hf.keys():
df_dataset = pd.DataFrame(dataset_hf[split])
# remove values equal to "N/A" for column dimension
df_filtered = df_dataset[df_dataset[dimension] != "N/A"]
df_filtered = df_filtered[df_filtered[dimension] != "other"]
df_filtered = df_filtered[df_filtered[dimension] != "unknown"]
if df_filtered.empty:
print("No data for split {} and dimension {}".format(split, dimension))
continue
if (len(df_filtered)>=5000):
sample_size = 5000
print("Selecting sample of size {}".format(sample_size))
else:
sample_size = len(df_filtered)
print("Selecting full split of size {}".format(sample_size))
df = df_filtered.sample(sample_size)
# if df_filtered is empty, skip violin plot generation for this split and dimension
print("Generating plot")
plt.figure(figsize=(20, 15))
plot = sns.violinplot(data = df, hue=dimension, x='dataset', y=metric, split=True, fill = False,inner = 'quart', legend='auto', common_norm=True)
plot.set_xticklabels(plot.get_xticklabels(), rotation = 30, horizontalalignment = 'right')
plt.title('Violin plot of {} by {} for split {}'.format(metric, dimension, split))
plt.xlabel(dimension)
plt.ylabel(metric)
#plt.show(
# save figure to file
os.makedirs(output_dir, exist_ok=True)
output_fn = os.path.join(output_dir, metric + "-" + dimension + "-" + split + ".png")
plt.savefig(output_fn)
print("Plot generation completed")
def read_reports(dataset_name):
json_contents = "./reports/{}/dataset_contents.json".format(dataset_name)
json_stats = "reports/{}/dataset_statistics.json".format(dataset_name)
with open(json_contents, 'r') as file:
contents_dict = json.load(file)
with open(json_stats, 'r') as file:
stats_dict = json.load(file)
return(stats_dict, contents_dict)
def add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret):
# merge contents if dictionaries for fields utts, words, words_unique, chars, chars_unique and speech_rate
for dataset in stats_dict_public.keys():
print(dataset)
for metric in stats_dict_secret[dataset].keys():
for split in stats_dict_secret[dataset][metric].keys():
if split == "test":
stats_dict_public[dataset][metric][split] = stats_dict_secret[dataset][metric][split]
return(stats_dict_public)
def dict_to_multindex_df(dict_in, all_splits=False):
# Creating a MultiIndex DataFrame
rows = []
for dataset, metrics in dict_in.items():
if (dataset == "all"):
continue
for metric, splits in metrics.items():
for split, value in splits.items():
if (all_splits):
if (split == "all_splits"):
rows.append((dataset, metric, split, value))
else:
if (split == "all_splits"):
continue
rows.append((dataset, metric, split, value))
# Convert to DataFrame
df = pd.DataFrame(rows, columns=['dataset', 'metric', 'split', 'value'])
df.set_index(['dataset', 'metric', 'split'], inplace=True)
return(df)
def dict_to_multindex_df_all_splits(dict_in):
# Creating a MultiIndex DataFrame
rows = []
for dataset, metrics in dict_in.items():
if (dataset == "all"):
continue
for metric, splits in metrics.items():
for split, value in splits.items():
if (split == "all_splits"):
rows.append((dataset, metric, split, value))
# Convert to DataFrame
df = pd.DataFrame(rows, columns=['dataset', 'metric', 'split', 'value'])
df.set_index(['dataset', 'metric', 'split'], inplace=True)
return(df)
def extract_stats_to_agg(df_multindex_per_split, metrics, add_total=True):
# input - multiindex dataframe has three indexes - dataset, metric, split
# select only relevant metrics
df_agg_splits = df_multindex_per_split.loc[(slice(None), metrics), :]
# unstack - move rows per split to columns
df_agg_splits = df_agg_splits.unstack(level ='split')
# aggregate values for all splits
df_agg_splits['value', 'total'] = df_agg_splits['value'].sum(axis=1)
# drop columns with splits
df_agg_splits.columns = df_agg_splits.columns.droplevel(0)
columns_to_drop = ['test', 'train', 'validation']
df_agg_splits.drop(columns = columns_to_drop, inplace = True)
# move rows corresponding to specific metrics into specific columns
df_agg_splits = df_agg_splits.unstack(level ='metric')
df_agg_splits.columns = df_agg_splits.columns.droplevel(0)
if(add_total):
# add row with the sum of all rows
df_agg_splits.loc['total'] = df_agg_splits.sum()
return(df_agg_splits)
def extract_stats_all_splits(df_multiindex_all_splits, metrics):
df_all_splits = df_multiindex_all_splits.loc[(slice(None), metrics), :]
df_all_splits = df_all_splits.unstack(level ='metric')
df_all_splits.columns = df_all_splits.columns.droplevel(0)
#print(df_all_splits)
df_all_splits = df_all_splits.droplevel('split', axis=0)
return(df_all_splits)
def extract_stats_for_dataset_card(df_multindex_per_split, subset, metrics, add_total=False):
#print(df_multindex_per_split)
df_metrics_subset = df_multindex_per_split
df_metrics_subset = df_metrics_subset.unstack(level ='split')
df_metrics_subset.columns = df_metrics_subset.columns.droplevel(0)
df_metrics_subset = df_metrics_subset.loc[(slice(None), metrics), :]
df_metrics_subset = df_metrics_subset.query("dataset == '{}'".format(subset))
# change order of columns to train validation test
df_metrics_subset.reset_index(inplace=True)
if (add_total):
new_columns = ['metric', 'train', 'validation', 'test', 'total']
total = df_metrics_subset[['train', 'validation','test']].sum(axis=1)
df_metrics_subset['total'] = total
else:
new_columns = ['metric', 'train', 'validation', 'test']
df_metrics_subset = df_metrics_subset.reindex(columns=new_columns)
df_metrics_subset.set_index('metric', inplace=True)
return(df_metrics_subset) |