File size: 23,000 Bytes
32fbd07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import json

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import os
import numpy as np

# move to consts
buckets_age=['teens','twenties', 'thirties', 'fourties', 'fifties', 'sixties', 'seventies', 'eighties', 'nineties']
buckets_sex=["male", "female"]

def load_bigos_analyzer_report(fp:str)->dict:
    with open(fp, 'r') as f:
        data = json.load(f)
    return data

def num_of_samples_per_split(dataset_hf):
    # input - huggingface dataset object
    # output - dictionary with statistics about number of samples per split
    out_dict = {}
    # number of samples per subset and split
    metric = "samples"
    print("Calculating {}".format(metric))

    for split in dataset_hf.keys():
        samples = dataset_hf[split].num_rows
        ##print(split, samples)
        out_dict[split] = samples
    # add number of samples for all splits
    out_dict["all_splits"] = sum(out_dict.values())

    return out_dict

def audio_duration_per_split(dataset_hf):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    metric = "audio[h]"
    print("Calculating {}".format(metric))

    
    for split in dataset_hf.keys():
        #sampling_rate = dataset_hf[split]["sampling_rate"][0]
        #audio_total_length_samples = 0
        #audio_total_length_samples = sum(len(audio_file["array"]) for audio_file in dataset_hf["test"]["audio"])
        audio_total_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
        audio_total_length_hours = round(audio_total_length_seconds / 3600,2)
        out_dict[split] = audio_total_length_hours
        #print(split, audio_total_length_hours)
    # add number of samples for all splits
    out_dict["all_splits"] = sum(out_dict.values())
    return out_dict

def speakers_per_split(dataset_hf):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    metric = "speakers"
    print("Calculating {}".format(metric))

    
    for split in dataset_hf.keys():
        # extract speakers from file_id 
        speakers_ids_all = [str(fileid).split("-")[4] for fileid in dataset_hf[split]["audioname"]]
        speakers_ids_uniq = list(set(speakers_ids_all))
        speakers_count = len(speakers_ids_uniq)
        #print(split, speakers_count)
        out_dict[split] = speakers_count
    # add number of samples for all splits
    out_dict["all_splits"] = sum(out_dict.values())
    return out_dict


def uniq_utts_per_split(dataset_hf, dataset_hf_secret):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    metric = "utts_unique"
    print("Calculating {}".format(metric))
    utts_all = []
    for split in dataset_hf.keys():
        # extract speakers from file_id
        if (split == "test"):
            utts_split = dataset_hf_secret[split]["ref_orig"]
        else:
            utts_split = dataset_hf[split]["ref_orig"]
        utts_all = utts_all + utts_split
        utts_uniq = list(set(utts_split))
        utts_uniq_count = len(utts_uniq)
        #print(split, utts_uniq_count)
        out_dict[split] = utts_uniq_count
    # add number of samples for all splits
    out_dict["all_splits"] = len(list(set(utts_all)))
    return out_dict,utts_all


def words_per_split(dataset_hf, dataset_hf_secret):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    metric = "words"
    print("Calculating {}".format(metric))

    for split in dataset_hf.keys():
        # extract speakers from file_id 
        if (split == "test"):
            utts_all = dataset_hf_secret[split]["ref_orig"]
        else:
            utts_all = dataset_hf[split]["ref_orig"]
        utts_lenghts = [len(utt.split(" ")) for utt in utts_all]
        words_all_count = sum(utts_lenghts)
        #print(split, words_all_count)
        out_dict[split] = words_all_count
    # add number of samples for all splits
    out_dict["all_splits"] = sum(out_dict.values())
    return out_dict


def uniq_words_per_split(dataset_hf, dataset_hf_secret):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    out_words_list = []
    metric = "words_unique"
    print("Calculating {}".format(metric))

    
    for split in dataset_hf.keys():
        # extract speakers from file_id 
        if (split == "test"):
            utts_all = dataset_hf_secret[split]["ref_orig"]
        else:
            utts_all = dataset_hf[split]["ref_orig"]

        words_all = " ".join(utts_all).split(" ")
        words_uniq = list(set(words_all))
        out_words_list = out_words_list + words_uniq
        words_uniq_count = len(words_uniq)
        #print(split, words_uniq_count)
        out_dict[split] = words_uniq_count

    # add number of samples for all splits
    out_words_uniq = list(set((out_words_list)))
    out_words_uniq_count = len(out_words_uniq)
    out_dict["all_splits"] = out_words_uniq_count
    #print("all", out_words_uniq_count)

    return out_dict, out_words_uniq


def chars_per_split(dataset_hf, dataset_hf_secret):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}

    metric = "chars"
    print("Calculating {}".format(metric))

    
    for split in dataset_hf.keys():
        # extract speakers from file_id 
        if (split=="test"):
            utts_all = dataset_hf_secret[split]["ref_orig"]
        else:
            utts_all = dataset_hf[split]["ref_orig"]
        words_all = " ".join(utts_all).split(" ")
        chars_all = " ".join(words_all)
        chars_all_count = len(chars_all)
        #print(split, chars_all_count)
        out_dict[split] = chars_all_count
    # add number of samples for all splits
    out_dict["all_splits"] = sum(out_dict.values())
    return out_dict


def uniq_chars_per_split(dataset_hf, dataset_hf_secret):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    out_chars_list = []
    metric = "chars_unique"
    print("Calculating {}".format(metric))

    
    for split in dataset_hf.keys():
        # extract speakers from file_id 
        if(split == "test"):
            utts_all = dataset_hf_secret[split]["ref_orig"]        
        else:
            utts_all = dataset_hf[split]["ref_orig"]
        words_all = " ".join(utts_all).split(" ")
        words_uniq = list(set(words_all))
        chars_uniq = list(set("".join(words_uniq)))
        chars_uniq_count = len(chars_uniq)
        #print(split, chars_uniq_count)
        out_dict[split] = chars_uniq_count
        out_chars_list = out_chars_list + chars_uniq
    # add number of samples for all splits
    out_chars_uniq = list(set((out_chars_list)))
    out_chars_uniq_count = len(out_chars_uniq)
    out_dict["all_splits"] = out_chars_uniq_count
    #print("all", out_chars_uniq_count)

    return out_dict, out_chars_uniq

def meta_cov_per_split(dataset_hf, meta_field):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    no_meta=False
    # TODO move to config
    if meta_field == 'speaker_age':
        buckets = buckets_age
    if meta_field == 'speaker_sex':
        buckets = buckets_sex
    out_dict = {}
    metric = "meta_cov_" + meta_field
    print("Calculating {}".format(metric))

    meta_info_all = 0
    meta_info_not_null_all = 0
    for split in dataset_hf.keys():
        
        # extract speakers from file_id
        meta_info = dataset_hf[split][meta_field]
        meta_info_count = len(meta_info)
        meta_info_all += meta_info_count
        # calculate coverage
        meta_info_not_null_count = len([x for x in meta_info if x != "N/A"])
        if meta_info_not_null_count == 0:
            out_dict[split] = "N/A"
            continue
        meta_info_not_null_all += meta_info_not_null_count
        meta_info_coverage = round(meta_info_not_null_count / meta_info_count, 2)
        #print(split, meta_info_coverage)

        # add number of samples for all splits
        out_dict[split] = meta_info_coverage

    # add number of samples for all splits
    if (meta_info_not_null_all == 0):
        out_dict["all_splits"] = "N/A"
    else:
        out_dict["all_splits"] = round(meta_info_not_null_all/meta_info_all,2 )
    return out_dict


def speech_rate_words_per_split(dataset_hf, dataset_hf_secret):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    metric = "words_per_second"
    print("Calculating {}".format(metric))

    words_all_count = 0
    audio_total_length_seconds = 0

    for split in dataset_hf.keys():
        # extract speakers from file_id 
        if (split == "test"):
            utts_split = dataset_hf_secret[split]["ref_orig"]
        else:
            utts_split = dataset_hf[split]["ref_orig"]
        words_split = " ".join(utts_split).split(" ")
        words_split_count = len(words_split)
        words_all_count += words_split_count
        audio_split_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
        audio_total_length_seconds += audio_split_length_seconds
        speech_rate = round(words_split_count / audio_split_length_seconds, 2)
        #print(split, speech_rate)
        out_dict[split] = speech_rate
    # add number of samples for all splits
    out_dict["all_splits"] = round(words_all_count / audio_total_length_seconds, 2)
    return out_dict

def speech_rate_chars_per_split(dataset_hf, dataset_hf_secret):
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    metric = "chars_per_second"
    print("Calculating {}".format(metric))

    chars_all_count = 0
    audio_total_length_seconds = 0

    for split in dataset_hf.keys():
        # extract speakers from file_id 
        if (split == "test"):
            utts_split = dataset_hf_secret[split]["ref_orig"]
        else:
            utts_split = dataset_hf[split]["ref_orig"]
        words_split = " ".join(utts_split).split(" ")
        chars_split_count = len("".join(words_split))
        chars_all_count += chars_split_count
        audio_split_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
        audio_total_length_seconds += audio_split_length_seconds
        speech_rate = round(chars_split_count / audio_split_length_seconds, 2)
        #print(split, speech_rate)
        out_dict[split] = speech_rate
    # add number of samples for all splits
    out_dict["all_splits"] = round(chars_all_count / audio_total_length_seconds, 2)
    return out_dict


# distribution of speaker age
def meta_distribution_text(dataset_hf, meta_field):
    no_meta=False
    if meta_field == 'speaker_age':
        buckets = buckets_age
    if meta_field == 'speaker_sex':
        buckets = buckets_sex
    
    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict = {}
    metric = "distribution_" + meta_field 
    print("Calculating {}".format(metric))

    
    values_count_total = {}
    for bucket in buckets:
        values_count_total[bucket]=0

    for split in dataset_hf.keys():
        out_dict[split] = {}
        # extract speakers from file_id
        meta_info = dataset_hf[split][meta_field]
        meta_info_not_null = [x for x in meta_info if x != "N/A"]

        if len(meta_info_not_null) == 0:
            out_dict[split]="N/A"
            no_meta=True
            continue
        for bucket in buckets:
            values_count = meta_info_not_null.count(bucket)
            values_count_total[bucket] += values_count
            out_dict[split][bucket] = round(values_count/len(meta_info_not_null),2)
        #print(split, out_dict[split])
    
    # add number of samples for all splits
    if (no_meta):
        out_dict["all_splits"] = "N/A"
        return out_dict
    
    out_dict["all_splits"] = {}
    # calculate total number of samples in values_count_total
    for bucket in buckets:
        total_samples = sum(values_count_total.values())
        out_dict["all_splits"][bucket] = round(values_count_total[bucket]/total_samples,2)
    return out_dict



def recordings_per_speaker(dataset_hf):
    recordings_per_speaker_stats_dict = {}

    # input - huggingface dataset object
    # output - dictionary with statistics about audio duration per split
    out_dict_stats = {}
    out_dict_contents = {}

    metric = "recordings_per_speaker"
    print("Calculating {}".format(metric))
    
    recordings_per_speaker_stats_dict_all = {}
    recordings_total=0

    speakers_total = 0

    for split in dataset_hf.keys():
        # extract speakers from file_id 
        audiopaths = dataset_hf[split]["audioname"]
        speaker_prefixes = [str(fileid).split("-")[0:5] for fileid in audiopaths]

        speakers_dict_split = {}
        # create dictionary with list of audio paths matching speaker prefix

        # Create initial dictionary keys from speaker prefixes
        for speaker_prefix in speaker_prefixes:
            speaker_prefix_str = "-".join(speaker_prefix)
            speakers_dict_split[speaker_prefix_str] = []

        # Populate the dictionary with matching audio paths
        for audio_path in audiopaths:
            for speaker_prefix_str in speakers_dict_split.keys():
                if speaker_prefix_str in audio_path:
                    speakers_dict_split[speaker_prefix_str].append(audio_path)


        # iterate of speaker_dict prefixes and calculate number of recordings per speaker.
        recordings_per_speaker_stats_dict_split = {}
        for speaker_prefix_str in speakers_dict_split.keys():
            recordings_per_speaker_stats_dict_split[speaker_prefix_str] = len(speakers_dict_split[speaker_prefix_str])
        
        out_dict_contents[split] = {}
        out_dict_contents[split] = recordings_per_speaker_stats_dict_split    
        
        # use recordings_per_speaker_stats to calculate statistics like min, max, avg, median, std
        out_dict_stats[split] = {}
        speakers_split = len(list(recordings_per_speaker_stats_dict_split.keys()))
        speakers_total += speakers_split
        
        recordings_split  = len(audiopaths)
        recordings_total += recordings_split

        average_recordings_per_speaker = round( recordings_split / speakers_split,2)
        out_dict_stats[split]["average"] = average_recordings_per_speaker
        out_dict_stats[split]["std"] = round(np.std(list(recordings_per_speaker_stats_dict_split.values())),2)
        out_dict_stats[split]["median"] = np.median(list(recordings_per_speaker_stats_dict_split.values()))
        out_dict_stats[split]["min"] = min(recordings_per_speaker_stats_dict_split.values())
        out_dict_stats[split]["max"] = max(recordings_per_speaker_stats_dict_split.values())

        recordings_per_speaker_stats_dict_all = recordings_per_speaker_stats_dict_all |  recordings_per_speaker_stats_dict_split
         # add number of samples for all splits
    
    average_recordings_per_speaker_all = round( recordings_total / speakers_total , 2)
    out_dict_stats["all_splits"] = {}
    out_dict_stats["all_splits"]["average"] = average_recordings_per_speaker_all
    out_dict_stats["all_splits"]["std"] = round(np.std(list(recordings_per_speaker_stats_dict_all.values())),2)
    out_dict_stats["all_splits"]["median"] = np.median(list(recordings_per_speaker_stats_dict_all.values()))
    out_dict_stats["all_splits"]["min"] = min(recordings_per_speaker_stats_dict_all.values())
    out_dict_stats["all_splits"]["max"] = max(recordings_per_speaker_stats_dict_all.values())
    out_dict_contents["all_splits"] = recordings_per_speaker_stats_dict_all
    return out_dict_stats, out_dict_contents


def meta_distribution_bar_plot(dataset_hf, output_dir, dimension = "speaker_sex"):
    pass

def meta_distribution_violin_plot(dataset_hf, output_dir, metric = "audio_duration_seconds",  dimension = "speaker_sex"):
    # input - huggingface dataset object
    # output - figure with distribution of audio duration per sex
    out_dict = {}

    print("Generating violin plat for metric {} for dimension {}".format(metric, dimension))
    
    # drop samples for which dimension column values are equal to "N/A"
    for split in dataset_hf.keys():
        df_dataset = pd.DataFrame(dataset_hf[split])
        
        # remove values equal to "N/A" for column dimension
        df_filtered = df_dataset[df_dataset[dimension] != "N/A"]  
        df_filtered = df_filtered[df_filtered[dimension] != "other"]
        df_filtered = df_filtered[df_filtered[dimension] != "unknown"]
        if df_filtered.empty:
            print("No data for split {} and dimension {}".format(split, dimension))
            continue

        if (len(df_filtered)>=5000):
            sample_size = 5000
            print("Selecting sample of size {}".format(sample_size))
        else:
            sample_size = len(df_filtered)
            print("Selecting full split of size {}".format(sample_size))
        
        df = df_filtered.sample(sample_size)
        # if df_filtered is empty, skip violin plot generation for this split and dimension

        print("Generating plot")
        plt.figure(figsize=(20, 15))
        plot = sns.violinplot(data = df, hue=dimension, x='dataset', y=metric, split=True, fill = False,inner = 'quart', legend='auto', common_norm=True)
        plot.set_xticklabels(plot.get_xticklabels(), rotation = 30, horizontalalignment = 'right')

        plt.title('Violin plot of {} by {} for split {}'.format(metric, dimension, split))
        plt.xlabel(dimension)
        plt.ylabel(metric)
        
        
        #plt.show(
        # save figure to file
        os.makedirs(output_dir, exist_ok=True)
        output_fn = os.path.join(output_dir, metric + "-" + dimension + "-" + split + ".png") 
        plt.savefig(output_fn)
        print("Plot generation completed")

def read_reports(dataset_name):
    
    json_contents = "./reports/{}/dataset_contents.json".format(dataset_name)
    json_stats = "reports/{}/dataset_statistics.json".format(dataset_name)

    with open(json_contents, 'r') as file:
        contents_dict = json.load(file)

    with open(json_stats, 'r') as file:
        stats_dict = json.load(file)

    return(stats_dict, contents_dict)


def add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret):
    # merge contents if dictionaries for fields utts, words, words_unique, chars, chars_unique and speech_rate
    for dataset in stats_dict_public.keys():
        print(dataset)
        for metric in stats_dict_secret[dataset].keys():
            for split in stats_dict_secret[dataset][metric].keys():
                if split == "test":
                    stats_dict_public[dataset][metric][split] = stats_dict_secret[dataset][metric][split]

    return(stats_dict_public)

def dict_to_multindex_df(dict_in, all_splits=False):
    # Creating a MultiIndex DataFrame
    rows = []
    for dataset, metrics in dict_in.items():
        if (dataset == "all"):
            continue
        for metric, splits in metrics.items():
            for split, value in splits.items():
                if (all_splits):
                    if (split == "all_splits"):
                        rows.append((dataset, metric, split, value))
                else:
                    if (split == "all_splits"):
                        continue
                    rows.append((dataset, metric, split, value))

    # Convert to DataFrame
    df = pd.DataFrame(rows, columns=['dataset', 'metric', 'split', 'value'])
    df.set_index(['dataset', 'metric', 'split'], inplace=True)

    return(df)


def dict_to_multindex_df_all_splits(dict_in):
    # Creating a MultiIndex DataFrame
    rows = []
    for dataset, metrics in dict_in.items():
        if (dataset == "all"):
            continue
        for metric, splits in metrics.items():
            for split, value in splits.items():
                if (split == "all_splits"):
                    rows.append((dataset, metric, split, value))

    # Convert to DataFrame
    df = pd.DataFrame(rows, columns=['dataset', 'metric', 'split', 'value'])
    df.set_index(['dataset', 'metric', 'split'], inplace=True)

    return(df)


def extract_stats_to_agg(df_multindex_per_split, metrics):
    # input - multiindex dataframe has three indexes - dataset, metric, split 
    
    # select only relevant metrics
    df_agg_splits = df_multindex_per_split.loc[(slice(None), metrics), :]
    
    # unstack - move rows per split to columns
    df_agg_splits = df_agg_splits.unstack(level ='split')

    # aggregate values for all splits
    df_agg_splits['value', 'total'] = df_agg_splits['value'].sum(axis=1)
    # drop columns with splits
    df_agg_splits.columns = df_agg_splits.columns.droplevel(0)
    columns_to_drop = ['test', 'train', 'validation']
    df_agg_splits.drop(columns = columns_to_drop, inplace = True)

    # move rows corresponding to specific metrics into specific columns
    df_agg_splits = df_agg_splits.unstack(level ='metric')
    df_agg_splits.columns = df_agg_splits.columns.droplevel(0)
           
    return(df_agg_splits)



def extract_stats_all_splits(df_multiindex_all_splits, metrics):
    
    df_all_splits = df_multiindex_all_splits.loc[(slice(None), metrics), :]

    df_all_splits = df_all_splits.unstack(level ='metric')
    df_all_splits.columns = df_all_splits.columns.droplevel(0)

    #print(df_all_splits)
    df_all_splits = df_all_splits.droplevel('split', axis=0)

    return(df_all_splits)

def extract_stats_for_dataset_card(df_multindex_per_split, subset, metrics, add_total=False):
    
    print(df_multindex_per_split)
    df_metrics_subset = df_multindex_per_split
    
    df_metrics_subset = df_metrics_subset.unstack(level ='split')
    df_metrics_subset.columns = df_metrics_subset.columns.droplevel(0)
    
    df_metrics_subset = df_metrics_subset.loc[(slice(None), metrics), :]
    
    df_metrics_subset = df_metrics_subset.query("dataset == '{}'".format(subset))
    # change order of columns to train validation test
    df_metrics_subset.reset_index(inplace=True)
    if (add_total):
        new_columns = ['metric', 'train', 'validation', 'test', 'total']
        total = df_metrics_subset[['train', 'validation','test']].sum(axis=1)
        df_metrics_subset['total'] = total
    else:
        new_columns = ['metric', 'train', 'validation', 'test']
   
    df_metrics_subset = df_metrics_subset.reindex(columns=new_columns)
    df_metrics_subset.set_index('metric', inplace=True)
    
    return(df_metrics_subset)