File size: 6,925 Bytes
32fbd07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f0e74
32fbd07
 
 
 
5d90238
32fbd07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7504a25
 
32fbd07
7504a25
 
 
 
32fbd07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f0e74
32fbd07
 
 
 
25f0e74
32fbd07
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import pandas as pd
import streamlit as st

import matplotlib.pyplot as plt
import seaborn as sns
import os
import json

from utils import read_reports, dict_to_multindex_df
#add_test_split_stats_from_secret_dataset, dict_to_multindex_df_all_splits
from utils import extract_stats_to_agg, extract_stats_all_splits, extract_stats_for_dataset_card
from constants import BIGOS_INFO, PELCRA_INFO, ABOUT_INFO
from datasets import get_dataset_config_names

# PL ASR BIGOS analysis
# PL ASR Diagnostic analysis
# PELCRA analysis
# TODO - compare the datasets

st.set_page_config(layout="wide")

about, analysis_bigos, analysis_bigos_pelcra = st.tabs(["About BIGOS datasets", "BIGOS V2 analysis", "PELCRA for BIGOS analysis"])
#analysis_bigos_diagnostic
#########################################BIGOS################################################
with about:
    
    st.title("About BIGOS project")
    st.markdown(ABOUT_INFO, unsafe_allow_html=True)
    # TODO - load and display about BIGOS benchmark

with analysis_bigos:
    dataset_name = "amu-cai/pl-asr-bigos-v2"
    #dataset_secret = "amu-cai/pl-asr-bigos-v2-secret"
    dataset_short_name = "BIGOS"
    dataset_version = "V2"
    
    dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
    # remove "all" subset, which is always the last config type
    dataset_configs.pop()
    print(dataset_configs)
    # read the reports for public and secret datasets
    [stats_dict_public, contents_dict_public] = read_reports(dataset_name)

    # update the metrics for test split with the secret dataset statistics
    #stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
    df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
    df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)

    # extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
    #st.header("Summary statistics")


    st.header("Dataset level metrics")
    metrics_size = ["samples", "audio[h]", "speakers", "words",  "chars"]
    df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)

    # split dataframe into separate dataframes for easier analysis and visualization
    st.subheader("Dataset size (audio)")
    df_sum_stats_audio = df_sum_stats_agg[["audio[h]", "samples", "speakers"]]
    st.dataframe(df_sum_stats_audio)
    
    st.subheader("Dataset size (text)")
    df_sum_stats_text = df_sum_stats_agg[["samples", "words", "chars"]]
    st.dataframe(df_sum_stats_text)


    metrics_features = ["utts_unique", "words_unique", "chars_unique", "words_per_sec", "chars_per_sec", "average_audio_duration[s]"]

    df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)

    st.subheader("Dataset features (text)")
    df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features[0:3]]
    st.dataframe(df_sum_stats_feats_text)

    st.subheader("Dataset features (audio)")
    df_sum_stats_feats_audio = df_sum_stats_all_splits[metrics_features[3:]]
    st.dataframe(df_sum_stats_feats_audio)

    st.header("BIGOS subsets (source datasets) cards")
    for subset in dataset_configs:
        st.subheader("Dataset card for: {}".format(subset))
        df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
        st.dataframe(df_metrics_subset_size)
        df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
        st.dataframe(df_metrics_subset_features)


    
#########################################PELCRA################################################
with analysis_bigos_pelcra:

    dataset_name = "pelcra/pl-asr-pelcra-for-bigos"
    #dataset_secret = "pelcra/pl-asr-pelcra-for-bigos-secret"

    dataset_short_name = "PELCRA"

    # local version with granted gated access
    #dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
    # remove "all" subset, which is always the last config type
    #dataset_configs.pop()
    
    # remote version with hardcoded access
    dataset_configs = ['ul-diabiz_poleval-22', 'ul-spokes_mix_emo-18', 'ul-spokes_mix_luz-18', 'ul-spokes_mix_parl-18', 'ul-spokes_biz_bio-23', 'ul-spokes_biz_int-23', 'ul-spokes_biz_luz-23', 'ul-spokes_biz_pod-23', 'ul-spokes_biz_pres-23', 'ul-spokes_biz_vc-23', 'ul-spokes_biz_vc2-23', 'ul-spokes_biz_wyw-23']
    print(dataset_configs)
    # read the reports for public and secret datasets
    [stats_dict_public, contents_dict_public] = read_reports(dataset_name)

    # update the metrics for test split with the secret dataset statistics
    #stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
    df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
    df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)

    # extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
    #st.header("Summary statistics")


    st.header("Dataset level metrics")
    metrics_size = ["samples", "audio[h]", "speakers", "words",  "chars"]
    df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)

    #st.dataframe(df_sum_stats_agg)
    #print(df_sum_stats.columns)
    
    # split dataframe into separate dataframes for easier analysis and visualization
    st.subheader("Dataset size (audio)")
    df_sum_stats_audio = df_sum_stats_agg[["audio[h]", "samples", "speakers"]]
    st.dataframe(df_sum_stats_audio)
    
    st.subheader("Dataset size (text)")
    df_sum_stats_text = df_sum_stats_agg[["samples", "words", "chars"]]
    st.dataframe(df_sum_stats_text)


    metrics_features = ["utts_unique", "words_unique", "chars_unique", "words_per_sec", "chars_per_sec", "average_audio_duration[s]"]

    df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)

    st.subheader("Dataset features (text)")
    df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features[0:3]]
    st.dataframe(df_sum_stats_feats_text)

    st.subheader("Dataset features (audio)")
    df_sum_stats_feats_audio = df_sum_stats_all_splits[metrics_features[3:]]
    st.dataframe(df_sum_stats_feats_audio)

    st.header("BIGOS subsets (source datasets) cards")
    for subset in dataset_configs:
        st.subheader("Dataset card for: {}".format(subset))
        df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
        st.dataframe(df_metrics_subset_size)
        df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
        st.dataframe(df_metrics_subset_features)