Spaces:
Sleeping
Sleeping
File size: 16,004 Bytes
3b07c2b 0587641 81fdfb6 0587641 0147fc2 56bfb5d 0147fc2 3b07c2b 81fdfb6 0147fc2 56bfb5d 0147fc2 56bfb5d 0147fc2 56bfb5d 0147fc2 56bfb5d 0147fc2 56bfb5d 0147fc2 0587641 81fdfb6 0147fc2 0587641 0147fc2 0587641 0147fc2 0587641 0147fc2 0587641 0147fc2 0587641 56bfb5d 0587641 56bfb5d 0587641 56bfb5d 0587641 56bfb5d 0147fc2 56bfb5d 0587641 81fdfb6 0587641 56bfb5d 0147fc2 0587641 56bfb5d 0147fc2 56bfb5d 0587641 56bfb5d 0587641 56bfb5d 0587641 56bfb5d 0587641 56bfb5d 0587641 56bfb5d 0587641 81fdfb6 0147fc2 81fdfb6 56bfb5d 0147fc2 56bfb5d 0147fc2 56bfb5d 0147fc2 56bfb5d 0147fc2 56bfb5d 0587641 56bfb5d 81fdfb6 56bfb5d 81fdfb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import gradio as gr
import whisper
import numpy as np
import openai
import os
from gtts import gTTS
import json
import hashlib
import random
import string
import uuid
from datetime import date,datetime
from huggingface_hub import Repository, upload_file
import shutil
from helpers import dict_origin
HF_TOKEN_WRITE = os.environ.get("HF_TOKEN_WRITE")
print("HF_TOKEN_WRITE", HF_TOKEN_WRITE)
today = date.today()
today_ymd = today.strftime("%Y%m%d")
def greet(name):
return "Hello " + name + "!!"
with open('app.css','r') as f:
css_file = f.read()
markdown="""
# Polish ASR BIGOS workspace
"""
# TODO move to config
WORKING_DATASET_REPO_URL = "https://huggingface.co/datasets/goodmike31/working-db"
REPO_NAME = "goodmike31/working-db"
REPOSITORY_DIR = "data"
LOCAL_DIR = "data_local"
os.makedirs(LOCAL_DIR,exist_ok=True)
def dump_json(thing,file):
with open(file,'w+',encoding="utf8") as f:
json.dump(thing,f)
def get_unique_name():
return ''.join([random.choice(string.ascii_letters
+ string.digits) for n in range(32)])
def get_prompts(domain, type, size, language_code):
print(f"Retrieving prompts for domain {domain} with method: {type} for language_code {language_code} of size {size}")
promptset = ["test1", "test2"]
first_prompt = promptset[0]
return(promptset, first_prompt)
def save_recording_and_meta(project_name, recording, transcript, language_code, spk_age, spk_accent, spk_city, spk_gender, spk_nativity, promptset, prompt_number):
#, name, age, gender):
# TODO save user data in the next version
speaker_metadata={}
speaker_metadata['gender'] = spk_gender if spk_gender !='' else 'unknown'
speaker_metadata['age'] = spk_age if spk_age !='' else 'unknown'
speaker_metadata['accent'] = spk_accent if spk_accent !='' else 'unknown'
speaker_metadata['city'] = spk_city if spk_city !='' else 'unknown'
speaker_metadata['nativity'] = spk_nativity if spk_nativity !='' else 'unknown'
# TODO get ISO-693-1 codes
transcript =transcript.strip()
SAVE_ROOT_DIR = os.path.join(LOCAL_DIR, project_name, today_ymd)
SAVE_DIR_AUDIO = os.path.join(SAVE_ROOT_DIR, "audio")
SAVE_DIR_META = os.path.join(SAVE_ROOT_DIR, "meta")
os.makedirs(SAVE_DIR_AUDIO, exist_ok=True)
os.makedirs(SAVE_DIR_META, exist_ok=True)
# Write audio to file
#audio_name = get_unique_name()
uuid_name = str(uuid.uuid4())
audio_fn = uuid_name + ".wav"
audio_output_fp = os.path.join(SAVE_DIR_AUDIO, audio_fn)
print (f"Saving {recording} as {audio_output_fp}")
shutil.copy2(recording, audio_output_fp)
# Write metadata.json to file
meta_fn = uuid_name + 'metadata.jsonl'
json_file_path = os.path.join(SAVE_DIR_META, meta_fn)
now = datetime.now()
timestamp_str = now.strftime("%d/%m/%Y %H:%M:%S")
metadata= {'id':uuid_name,'audio_file': audio_fn,
'language_code':language_code,
'transcript':transcript,'age': speaker_metadata['age'],
'gender': speaker_metadata['gender'],'accent': speaker_metadata['accent'],
'nativity': speaker_metadata['nativity'],'city': speaker_metadata['city'],
"date":today_ymd, "timestamp": timestamp_str }
dump_json(metadata, json_file_path)
# Simply upload the audio file and metadata using the hub's upload_file
# Upload the audio
repo_audio_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "audio", audio_fn)
_ = upload_file(path_or_fileobj = audio_output_fp,
path_in_repo = repo_audio_path,
repo_id = REPO_NAME,
repo_type = 'dataset',
token = HF_TOKEN_WRITE
)
# Upload the metadata
repo_json_path = os.path.join(REPOSITORY_DIR, project_name, today_ymd, "meta", meta_fn)
_ = upload_file(path_or_fileobj = json_file_path,
path_in_repo = repo_json_path,
repo_id = REPO_NAME,
repo_type = 'dataset',
token = HF_TOKEN_WRITE
)
output = print(f"Recording {audio_fn} and meta file {meta_fn} successfully saved to repo!")
# None resets the audio component
return ["Next prompt", 1, None]
def whisper_model_change(radio_whisper_model):
whisper_model = whisper.load_model(radio_whisper_model)
return(whisper_model)
def prompt_gpt(input_text, api_key, temperature):
#, role, template_prompt, template_answer):
#TODO add option to specify instruction
openai.api_key = api_key
#TODO add specific message for specific role
system_role_message="You are a helpful assistant"
messages = [
{"role": "system", "content": system_role_message}]
if input_text:
messages.append(
{"role": "user", "content": input_text},
)
chat_completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
temperature=temperature
)
reply = chat_completion.choices[0].message.content
#TODO save chat completion for future reuse
return reply
def process_pipeline(audio):
asr_out = transcribe(audio)
gpt_out = prompt_gpt(asr_out)
tts_out = synthesize_speech(gpt_out)
return(tts_out)
def transcribe(audio, language_code, whisper_model, whisper_model_type):
if not whisper_model:
whisper_model=init_whisper_model(whisper_model_type)
print(f"Transcribing {audio} for language_code {language_code} and model {whisper_model_type}")
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio)
options = whisper.DecodingOptions(language=language_code, without_timestamps=True, fp16=False)
result = whisper.decode(whisper_model, mel, options)
result_text = result.text
return result_text
def init_whisper_model(whisper_model_type):
print("Initializing whisper model")
print(whisper_model_type)
whisper_model = whisper.load_model(whisper_model_type)
return whisper_model
def synthesize_speech(text, language_code):
audioobj = gTTS(text = text,
lang = language_code,
slow = False)
audioobj.save("Temp.mp3")
return("Temp.mp3")
block = gr.Blocks(css=css_file)
with block:
#state variables
language_code = gr.State("pl")
domain = gr.State()
prompts_type = gr.State()
promptset = gr.State("test.prompts.txt")
prompt_history = gr.State()
current_prompt = gr.State()
prompt_number = gr.State()
finished_recording = gr.State()
temperature = gr.State(0)
whisper_model_type = gr.State("base")
whisper_model = gr.State()
openai_api_key = gr.State()
google_api_key = gr.State()
azure_api_key = gr.State()
project_name = gr.State("voicebot") # TODO add list of projects to organize saved data
spk_age = gr.State("unknown")
spk_accent = gr.State("unknown")
spk_city = gr.State("unknown")
spk_gender = gr.State("unknown")
spk_nativity = gr.State("unknown")
cities = sorted(dict_origin["Poland"]["cities"])
# state handling functions
def change_domain(choice):
print("Changing promptset domain to")
print(choice)
domain=choice
return(domain)
def change_prompts_type(choice):
print("Changing promptset type to")
print(choice)
prompts_type=choice
return(prompts_type)
def change_nativity(choice):
print("Changing speaker nativity to")
print(choice)
spk_nativity=choice
return(spk_nativity)
def change_accent(choice):
print("Changing speaker accent to")
print(choice)
spk_accent=choice
return(spk_accent)
def change_age(choice):
print("Changing speaker age to")
print(choice)
spk_age=choice
return(spk_age)
def change_city(choice):
print("Changing speaker city to")
print(choice)
spk_city=choice
return(spk_city)
def change_gender(choice):
print("Changing speaker gender to")
print(choice)
spk_gender=choice
return(spk_gender)
def change_language(choice):
if choice == "Polish":
language_code="pl"
print("Switching to Polish")
print("language_code")
print(language_code)
elif choice == "English":
language_code="en"
print("Switching to English")
print("language_code")
print(language_code)
return(language_code)
def change_whisper_model(choice):
whisper_model_type = choice
print("Switching Whisper model")
print(whisper_model_type)
whisper_model = init_whisper_model(whisper_model_type)
return [whisper_model_type, whisper_model]
gr.Markdown(markdown)
with gr.Tabs():
with gr.TabItem('General settings'):
radio_lang = gr.Radio(["Polish", "English"], label="Language", info="If none is selected, Polish is used")
radio_asr_type = gr.Radio(["Local", "Cloud"], label="Select ASR type", info="Cloud models are faster and more accurate, but costs money")
with gr.Accordion(label="Local ASR settings", open=False):
#radio_asr_type = gr.Radio(["Local", "Cloud"], label="Select ASR type", info="Cloud models are faster and more accurate, but costs money")
#radio_cloud_asr = gr.Radio(["Whisper", "Google", "Azure"], label="Select Cloud ASR provider", info="You need to provide API keys for specific service")
radio_whisper_model = gr.Radio(["tiny", "base", "small", "medium", "large"], label="Whisper ASR model (local)", info="Larger models are more accurate, but slower. Default - base")
with gr.Accordion(label="Cloud ASR settings", open=False):
radio_cloud_asr = gr.Radio(["Whisper", "Google", "Azure"], label="Select Cloud ASR provider", info="You need to provide API keys for specific service")
with gr.Accordion(label="Cloud API Keys",open=False):
gr.HTML("<p class=\"apikey\">Open AI API Key:</p>")
# API key textbox (password-style)
openai_api_key = gr.Textbox(label="", elem_id="pw")
gr.HTML("<p class=\"apikey\">Google Cloud API Key:</p>")
# API key textbox (password-style)
google_api_key = gr.Textbox(label="", elem_id="pw")
gr.HTML("<p class=\"apikey\">Azure Cloud API Key:</p>")
# API key textbox (password-style)
azure_api_key = gr.Textbox(label="", elem_id="pw")
with gr.Accordion(label="Chat GPT settings",open=False):
slider_temp = gr.Slider(minimum=0, maximum= 2, step=0.2, label="ChatGPT temperature")
with gr.TabItem('Speaker information'):
with gr.Row():
dropdown_spk_nativity = gr.Dropdown(["Polish", "Other"], label="Your native language", info="")
dropdown_spk_gender = gr.Dropdown(["Male", "Female", "Other", "Prefer not to say"], label="Your gender", info="")
dropdown_spk_age = gr.Dropdown(["under 20", "20-29", "30-39", "40-49", "50-59", "over 60"], label="Your age range", info="")
dropdown_spk_origin_city = gr.Dropdown(cities, label="Your home city", visible=True, info="Specify the closest city your place of birth and upbringing")
#radio_gdpr_consent = gr.Radio(["Yes", "No"], label="Personal data processing consent", info="Do you agree for your personal data processing according to the policy (link)")
dropdown_spk_nativity.change(fn=change_nativity, inputs=dropdown_spk_nativity, outputs=spk_age)
dropdown_spk_gender.change(fn=change_gender, inputs=dropdown_spk_gender, outputs=spk_gender)
dropdown_spk_age.change(fn=change_age, inputs=dropdown_spk_age, outputs=spk_age)
dropdown_spk_origin_city.change(fn=change_city, inputs=dropdown_spk_origin_city, outputs=spk_city)
with gr.TabItem('Voicebot playground'):
mic_recording = gr.Audio(source="microphone", type="filepath", label='Record your voice')
with gr.Row():
button_transcribe = gr.Button("Transcribe speech")
button_save_audio_and_trans = gr.Button("Save audio recording and transcription")
out_asr = gr.Textbox(placeholder="ASR output",
lines=2,
max_lines=5,
show_label=False)
with gr.Row():
button_prompt_gpt = gr.Button("Prompt ChatGPT")
button_save_gpt_response = gr.Button("Save ChatGPT response")
out_gpt = gr.Textbox(placeholder="ChatGPT output",
lines=4,
max_lines=10,
show_label=False)
with gr.Row():
button_synth_speech = gr.Button("Synthesize speech")
button_save_synth_audio = gr.Button("Save synthetic audio")
synth_recording = gr.Audio()
# Events actions
button_save_audio_and_trans.click(save_recording_and_meta, inputs=[project_name, mic_recording, out_asr, language_code, spk_age, spk_accent, spk_city, spk_gender, spk_nativity], outputs=[])
button_transcribe.click(transcribe, inputs=[mic_recording, language_code, whisper_model,whisper_model_type], outputs=out_asr)
button_prompt_gpt.click(prompt_gpt, inputs=[out_asr, openai_api_key, slider_temp], outputs=out_gpt)
button_synth_speech.click(synthesize_speech, inputs=[out_gpt, language_code], outputs=synth_recording)
radio_lang.change(fn=change_language, inputs=radio_lang, outputs=language_code)
radio_whisper_model.change(fn=change_whisper_model, inputs=radio_whisper_model, outputs=[whisper_model_type, whisper_model])
with gr.TabItem('Batch audio collection'):
with gr.Accordion(label="Promptset settings"):
radio_prompts_domain = gr.Dropdown(["Bridge"], label="Select promptset domain", info="")
radio_promptset_type = gr.Radio(["New promptset generation", "Existing promptset use"], label="Language", value ="Existing promptset use", info="New promptset is generated using ChatGPT")
var_promptset_size = gr.Textbox(label="Specify number of prompts (min 10, max 200)")
button_get_prompts = gr.Button("Save settings and get first prompt to record")
prompt_text = gr.Textbox(placeholder='Prompt to be recorded',label="Prompt to be read during recording")
speech_recording = gr.Audio(source="microphone",label="Select 'record from microphone' and read prompt displayed above", type="filepath")
radio_prompts_domain.change(fn=change_domain, inputs=radio_prompts_domain, outputs=domain)
radio_promptset_type.change(fn=change_prompts_type, inputs=radio_promptset_type, outputs=prompts_type)
button_save_and_next = gr.Button("Save audio recording and move to the next prompt")
button_get_prompts.click(get_prompts, inputs=[radio_prompts_domain, radio_promptset_type, var_promptset_size, language_code], outputs = [promptset, prompt_text])
button_save_and_next.click(save_recording_and_meta, inputs=[project_name, speech_recording, prompt_text, language_code, spk_age, spk_accent, spk_city, spk_gender, spk_nativity, promptset, prompt_number], outputs=[prompt_text, prompt_number, speech_recording])
block.launch() |