File size: 5,685 Bytes
0241217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import CLIP.clip as clip
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from captum.attr import visualization
import os


from CLIP.clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()

#@title Control context expansion (number of attention layers to consider)
#@title Number of layers for image Transformer
start_layer =  11#@param {type:"number"}

#@title Number of layers for text Transformer
start_layer_text =  11#@param {type:"number"}


def interpret(image, texts, model, device):
    batch_size = texts.shape[0]
    images = image.repeat(batch_size, 1, 1, 1)
    logits_per_image, logits_per_text = model(images, texts)
    probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()
    index = [i for i in range(batch_size)]
    one_hot = np.zeros((logits_per_image.shape[0], logits_per_image.shape[1]), dtype=np.float32)
    one_hot[torch.arange(logits_per_image.shape[0]), index] = 1
    one_hot = torch.from_numpy(one_hot).requires_grad_(True)
    one_hot = torch.sum(one_hot.to(device) * logits_per_image)
    model.zero_grad()

    image_attn_blocks = list(dict(model.visual.transformer.resblocks.named_children()).values())
    num_tokens = image_attn_blocks[0].attn_probs.shape[-1]
    R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device)
    R = R.unsqueeze(0).expand(batch_size, num_tokens, num_tokens)
    for i, blk in enumerate(image_attn_blocks):
        if i < start_layer:
            continue
        grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach()
        cam = blk.attn_probs.detach()
        cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1])
        grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1])
        cam = grad * cam
        cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1])
        cam = cam.clamp(min=0).mean(dim=1)
        R = R + torch.bmm(cam, R)
    image_relevance = R[:, 0, 1:]


    text_attn_blocks = list(dict(model.transformer.resblocks.named_children()).values())
    num_tokens = text_attn_blocks[0].attn_probs.shape[-1]
    R_text = torch.eye(num_tokens, num_tokens, dtype=text_attn_blocks[0].attn_probs.dtype).to(device)
    R_text = R_text.unsqueeze(0).expand(batch_size, num_tokens, num_tokens)
    for i, blk in enumerate(text_attn_blocks):
        if i < start_layer_text:
            continue
        grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach()
        cam = blk.attn_probs.detach()
        cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1])
        grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1])
        cam = grad * cam
        cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1])
        cam = cam.clamp(min=0).mean(dim=1)
        R_text = R_text + torch.bmm(cam, R_text)
    text_relevance = R_text

    return text_relevance, image_relevance


def show_image_relevance(image_relevance, image, orig_image, device, show=True):
    # create heatmap from mask on image
    def show_cam_on_image(img, mask):
        heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
        heatmap = np.float32(heatmap) / 255
        cam = heatmap + np.float32(img)
        cam = cam / np.max(cam)
        return cam

    # plt.axis('off')
    # f, axarr = plt.subplots(1,2)
    # axarr[0].imshow(orig_image)
    
    if show:
        fig, axs = plt.subplots(1, 2)
        axs[0].imshow(orig_image);
        axs[0].axis('off');

    image_relevance = image_relevance.reshape(1, 1, 7, 7)
    image_relevance = torch.nn.functional.interpolate(image_relevance, size=224, mode='bilinear')
    image_relevance = image_relevance.reshape(224, 224).to(device).data.cpu().numpy()
    image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
    image = image[0].permute(1, 2, 0).data.cpu().numpy()
    image = (image - image.min()) / (image.max() - image.min())
    vis = show_cam_on_image(image, image_relevance)
    vis = np.uint8(255 * vis)
    vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR)

    if show:
        # axar[1].imshow(vis)
        axs[1].imshow(vis);
        axs[1].axis('off');
        # plt.imshow(vis)

    return image_relevance


def show_heatmap_on_text(text, text_encoding, R_text, show=True):
    CLS_idx = text_encoding.argmax(dim=-1)
    R_text = R_text[CLS_idx, 1:CLS_idx]
    text_scores = R_text / R_text.sum()
    text_scores = text_scores.flatten()
    # print(text_scores)
    text_tokens=_tokenizer.encode(text)
    text_tokens_decoded=[_tokenizer.decode([a]) for a in text_tokens]
    vis_data_records = [visualization.VisualizationDataRecord(text_scores,0,0,0,0,0,text_tokens_decoded,1)]
    
    if show:
        visualization.visualize_text(vis_data_records)

    return text_scores, text_tokens_decoded


def show_img_heatmap(image_relevance, image, orig_image, device, show=True):
    return show_image_relevance(image_relevance, image, orig_image, device, show=show)


def show_txt_heatmap(text, text_encoding, R_text, show=True):
    return show_heatmap_on_text(text, text_encoding, R_text, show=show)


def load_dataset():
    dataset_path = os.path.join('..', '..', 'dummy-data', '71226_segments' + '.pt')
    device = "cuda" if torch.cuda.is_available() else "cpu"

    data = torch.load(dataset_path, map_location=device)

    return data


class color:
    PURPLE = '\033[95m'
    CYAN = '\033[96m'
    DARKCYAN = '\033[36m'
    BLUE = '\033[94m'
    GREEN = '\033[92m'
    YELLOW = '\033[93m'
    RED = '\033[91m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'
    END = '\033[0m'