File size: 8,918 Bytes
7751ada
0241217
 
 
 
 
 
 
 
 
d80767e
c3ca2bd
d80767e
0241217
 
 
 
 
 
 
 
 
 
 
7751ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0241217
 
 
ae6e057
 
 
d80767e
0241217
 
 
 
 
 
 
 
8f3d1af
0241217
 
8f3d1af
0241217
 
 
 
 
929c841
 
 
 
 
7751ada
 
 
 
 
 
 
 
 
929c841
 
330a2ff
 
8434fc6
66dfac7
 
fbfde1a
 
 
66dfac7
929c841
7751ada
 
929c841
66dfac7
929c841
 
 
 
 
 
 
 
 
 
 
 
 
39c7251
201e3f5
c3ca2bd
39c7251
7751ada
 
 
 
 
 
39c7251
7751ada
c3ca2bd
 
 
929c841
6d91375
 
cca85c2
7751ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0241217
9775911
852d405
 
 
0241217
929c841
be112ad
 
66dfac7
9775911
7751ada
 
 
 
c81ac67
3cba57d
929c841
b43e284
 
9b5cfa8
0bd28ed
9b5cfa8
9fa77d1
9b5cfa8
d6ba55e
 
 
9fa77d1
05b69fa
9fa77d1
9b5cfa8
330a2ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import re
import sys
import gradio as gr

# sys.path.append("../")
sys.path.append("CLIP_explainability/Transformer-MM-Explainability/")

import torch
import CLIP.clip as clip

import spacy
from PIL import Image, ImageFont, ImageDraw, ImageOps

from clip_grounding.utils.image import pad_to_square
from clip_grounding.datasets.png import (
    overlay_relevance_map_on_image,
)
from CLIP_explainability.utils import interpret, show_img_heatmap, show_heatmap_on_text

clip.clip._MODELS = {
    "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
    "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
}

colour_map = {
        "N": "#f77189",
        "CARDINAL": "#f7764a",
        "DATE": "#d98a32",
        "EVENT": "#bf9632",
        "FAC": "#a99e31",
        "GPE": "#90a531",
        "LANGUAGE": "#68ad31",
        "LAW": "#32b25e",
        "LOC": "#34af86",
        "MONEY": "#35ae9c",
        "NORP": "#36acac",
        "ORDINAL": "#37aabd",
        "ORG": "#39a7d4",
        "PERCENT": "#539ff4",
        "PERSON": "#9890f4",
        "PRODUCT": "#c47ef4",
        "QUANTITY": "#ef5ff4",
        "TIME": "#f565d0",
        "WORK_OF_ART": "#f66baf",
    }

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device, jit=False)

# nlp = spacy.load("en_core_web_sm")
import en_core_web_sm
nlp = en_core_web_sm.load()

# Gradio Section:
def run_demo(image, text):
    orig_image = pad_to_square(image)
    img = preprocess(orig_image).unsqueeze(0).to(device)
    text_input = clip.tokenize([text]).to(device)

    R_text, R_image = interpret(model=model, image=img, texts=text_input, device=device)

    image_relevance = show_img_heatmap(R_image[0], img, orig_image=orig_image, device=device)
    overlapped = overlay_relevance_map_on_image(image, image_relevance)

    text_scores, text_tokens_decoded = show_heatmap_on_text(text, text_input, R_text[0])

    highlighted_text = []
    for i, token in enumerate(text_tokens_decoded):
        highlighted_text.append((str(token), float(text_scores[i])))

    return overlapped, highlighted_text


# Default demo:

default_inputs = [
        gr.components.Image(type='pil', label="Original Image"),
        gr.components.Textbox(label="Image description"),
    ]

default_outputs = [
        gr.components.Image(type='pil', label="Output Image"),
        gr.components.HighlightedText(label="Text importance"),
    ]


description = """This demo is a copy of the demo CLIPGroundingExlainability built by Paul Hilders, Danilo de Goede and Piyush Bagad, as part of the course Interpretability and Explainability in AI (MSc AI, UvA, June 2022).

<br> <br>

                 This demo shows attributions scores on both the image and the text input when presenting CLIP with a

                 <text,image> pair. Attributions are computed as Gradient-weighted Attention Rollout (Chefer et al.,

                 2021), and can be thought of as an estimate of the effective attention CLIP pays to its input when

                 computing a multimodal representation. <span style="color:red">Warning:</span> Note that attribution

                 methods such as the one from this demo can only give an estimate of the real underlying behavior

                 of the model."""

iface = gr.Interface(fn=run_demo,
                     inputs=default_inputs,
                     outputs=default_outputs,
                     title="CLIP Grounding Explainability",
                     description=description,
                     examples=[["example_images/London.png", "London Eye"],
                               ["example_images/London.png", "Big Ben"],
                               ["example_images/harrypotter.png", "Harry"],
                               ["example_images/harrypotter.png", "Hermione"],
                               ["example_images/harrypotter.png", "Ron"],
                               ["example_images/Amsterdam.png", "Amsterdam canal"],
                               ["example_images/Amsterdam.png", "Old buildings"],
                               ["example_images/Amsterdam.png", "Pink flowers"],
                               ["example_images/dogs_on_bed.png", "Two dogs"],
                               ["example_images/dogs_on_bed.png", "Book"],
                               ["example_images/dogs_on_bed.png", "Cat"]])

# NER demo:
def add_label_to_img(img, label, add_entity_label=True):
    img = ImageOps.expand(img, border=45, fill=(255,255,255))
    draw = ImageDraw.Draw(img)
    font = ImageFont.truetype("arial.ttf", 24)
    m = re.match(r".*\((\w+)\)", label)
    if add_entity_label and m is not None:
        cat = m.group(1)
        colours = tuple(map(lambda l: int(''.join(l),16), zip(*[iter(colour_map[cat][1:])]*2)))

        draw.text((5,5), label , align="center", fill=colours, font=font)
    else:
        draw.text((5,5), label, align="center", fill=(0, 0, 0), font=font)

    return img

def NER_demo(image, text):
    # As the default image, we run the default demo on the input image and text:
    overlapped, highlighted_text = run_demo(image, text)

    gallery_images = [add_label_to_img(overlapped, "Complete sentence", add_entity_label=False)]

    labeled_text = dict(
            text=text,
            entities=[],
        )

    # Then, we run the demo for each of the noun chunks in the text:
    for chunk in nlp(text).noun_chunks:
        if len(chunk) == 1 and chunk[0].pos_ == "PRON":
            continue
        chunk_text = chunk.text
        chunk_label = None
        for t in chunk:
            if t.ent_type_ != '':
                chunk_label = t.ent_type_
                break
        if chunk_label is None:
            chunk_label = "N"

        labeled_text['entities'].append({'entity': chunk_label, 'start': chunk.start_char, 'end': chunk.end_char})
        overlapped, highlighted_text = run_demo(image, chunk_text)
        overlapped_labelled = add_label_to_img(overlapped, f"{chunk_text} ({chunk_label})")
        gallery_images.append(overlapped_labelled)

    return labeled_text, gallery_images

inputs_NER = [
        gr.Image(type='pil', label="Original Image"),
        gr.components.Textbox(label="Descriptive text"),
    ]

#colours = highlighter._style["color_map"]
outputs_NER = [
        gr.components.HighlightedText(show_legend=True, color_map=colour_map, label="Noun chunks"),
        gr.components.Gallery(type='pil', label="NER Entity explanations")
    ]

description_NER = """Automatically generated CLIP grounding explanations for

                     named entities, retrieved from the spacy NER model. <span style="color:red">Warning:</span> Note

                     that attribution methods such as the one from this demo can only give an estimate of the real

                     underlying behavior of the model."""

iface_NER = gr.Interface(fn=NER_demo,
                         inputs=inputs_NER,
                         outputs=outputs_NER,
                         title="Named Entity Grounding explainability using CLIP",
                         description=description_NER,
                         examples=[
                             ["example_images/London.png", "In this image we see Big Ben and the London Eye, on both sides of the river Thames."],
                             ["example_images/harrypotter.png", "Hermione, Harry and Ron in their school uniform"],
                             ],
                         cache_examples=False)

demo_tabs = gr.TabbedInterface([iface, iface_NER], ["Default", "NER"])

with demo_tabs:
    gr.Markdown("""

                ### Acknowledgements

                This demo was developed for the Interpretability & Explainability in AI course at the University of

                Amsterdam. We would like to express our thanks to Jelle Zuidema, Jaap Jumelet, Tom Kersten, Christos

                Athanasiadis, Peter Heemskerk, Zhi Zhang, and all the other TAs who helped us during this course.



                ---

                ### References

                \[1\]: Chefer, H., Gur, S., & Wolf, L. (2021). Generic attention-model explainability for interpreting bi-modal and encoder-decoder transformers. <br>

                \[2\]: Abnar, S., & Zuidema, W. (2020). Quantifying attention flow in transformers. arXiv preprint arXiv:2005.00928. <br>

                \[3\]: [https://samiraabnar.github.io/articles/2020-04/attention_flow](https://samiraabnar.github.io/articles/2020-04/attention_flow) <br>

                """)
demo_tabs.launch(show_error=True)