Spaces:
Sleeping
Sleeping
File size: 1,667 Bytes
531df03 4b5c989 531df03 4b5c989 374915b 4b5c989 374915b 4b5c989 531df03 4b5c989 b2a9886 4b5c989 b2a9886 531df03 4b5c989 531df03 2cf4056 d171bdb 4b5c989 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
import os
setup_complete = False
with open("guide1.txt") as f:
hitchhikersguide = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0, separator = "\n")
texts = text_splitter.split_text(hitchhikersguide)
def get_api_key(input_1, input_2):
if len(input_1) >= len(input_2):
os.environ['OPENAI_API_KEY'] = input_1
else:
os.environ['OPENAI_API_KEY'] = input_2
return True
def setup_chain():
global embeddings, docsearch, chain, setup_complete
embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff")
setup_complete = True
def make_inference(query):
if not setup_complete:
setup_chain()
docs = docsearch.get_relevant_documents(query)
return(chain.run(input_documents=docs, question=query))
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
gr.Interface(
make_inference,
[
gr.inputs.Textbox(lines=2, label="Query"),
],
gr.outputs.Textbox(label="Response"),
title="Query Hitchhiker's Guide",
description="What would Douglas Adams say if he saw you query The Hitchhiker's Guide to the Galaxy with AI? Try it for yourself...",
).launch(auth=get_api_key) |