Spaces:
Running
on
A10G
Running
on
A10G
File size: 35,289 Bytes
df2accb 0883aa1 df2accb 0883aa1 df2accb 0883aa1 df2accb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
import numpy as np
import json
from tqdm import tqdm
from sklearn.preprocessing import StandardScaler
from utils.io import save_feature, save_txt
from utils.util import has_existed
from utils.tokenizer import extract_encodec_token
from utils.stft import TacotronSTFT
from utils.dsp import compress, audio_to_label
from utils.data_utils import remove_outlier
from preprocessors.metadata import replace_augment_name
from scipy.interpolate import interp1d
ZERO = 1e-12
def extract_utt_acoustic_features_parallel(metadata, dataset_output, cfg, n_workers=1):
"""Extract acoustic features from utterances using muliprocess
Args:
metadata (dict): dictionary that stores data in train.json and test.json files
dataset_output (str): directory to store acoustic features
cfg (dict): dictionary that stores configurations
n_workers (int, optional): num of processes to extract features in parallel. Defaults to 1.
Returns:
list: acoustic features
"""
for utt in tqdm(metadata):
if cfg.task_type == "tts":
extract_utt_acoustic_features_tts(dataset_output, cfg, utt)
if cfg.task_type == "svc":
extract_utt_acoustic_features_svc(dataset_output, cfg, utt)
if cfg.task_type == "vocoder":
extract_utt_acoustic_features_vocoder(dataset_output, cfg, utt)
if cfg.task_type == "tta":
extract_utt_acoustic_features_tta(dataset_output, cfg, utt)
def avg_phone_feature(feature, duration, interpolation=False):
feature = feature[: sum(duration)]
if interpolation:
nonzero_ids = np.where(feature != 0)[0]
interp_fn = interp1d(
nonzero_ids,
feature[nonzero_ids],
fill_value=(feature[nonzero_ids[0]], feature[nonzero_ids[-1]]),
bounds_error=False,
)
feature = interp_fn(np.arange(0, len(feature)))
# Phoneme-level average
pos = 0
for i, d in enumerate(duration):
if d > 0:
feature[i] = np.mean(feature[pos : pos + d])
else:
feature[i] = 0
pos += d
feature = feature[: len(duration)]
return feature
def extract_utt_acoustic_features_serial(metadata, dataset_output, cfg):
"""Extract acoustic features from utterances (in single process)
Args:
metadata (dict): dictionary that stores data in train.json and test.json files
dataset_output (str): directory to store acoustic features
cfg (dict): dictionary that stores configurations
"""
for utt in tqdm(metadata):
if cfg.task_type == "tts":
extract_utt_acoustic_features_tts(dataset_output, cfg, utt)
if cfg.task_type == "svc":
extract_utt_acoustic_features_svc(dataset_output, cfg, utt)
if cfg.task_type == "vocoder":
extract_utt_acoustic_features_vocoder(dataset_output, cfg, utt)
if cfg.task_type == "tta":
extract_utt_acoustic_features_tta(dataset_output, cfg, utt)
def __extract_utt_acoustic_features(dataset_output, cfg, utt):
"""Extract acoustic features from utterances (in single process)
Args:
dataset_output (str): directory to store acoustic features
cfg (dict): dictionary that stores configurations
utt (dict): utterance info including dataset, singer, uid:{singer}_{song}_{index},
path to utternace, duration, utternace index
"""
from utils import audio, f0, world, duration
uid = utt["Uid"]
wav_path = utt["Path"]
if os.path.exists(os.path.join(dataset_output, cfg.preprocess.raw_data)):
wav_path = os.path.join(
dataset_output, cfg.preprocess.raw_data, utt["Singer"], uid + ".wav"
)
with torch.no_grad():
# Load audio data into tensor with sample rate of the config file
wav_torch, _ = audio.load_audio_torch(wav_path, cfg.preprocess.sample_rate)
wav = wav_torch.cpu().numpy()
# extract features
if cfg.preprocess.extract_duration:
durations, phones, start, end = duration.get_duration(
utt, wav, cfg.preprocess
)
save_feature(dataset_output, cfg.preprocess.duration_dir, uid, durations)
save_txt(dataset_output, cfg.preprocess.lab_dir, uid, phones)
wav = wav[start:end].astype(np.float32)
wav_torch = torch.from_numpy(wav).to(wav_torch.device)
if cfg.preprocess.extract_linear_spec:
from utils.mel import extract_linear_features
linear = extract_linear_features(wav_torch.unsqueeze(0), cfg.preprocess)
save_feature(
dataset_output, cfg.preprocess.linear_dir, uid, linear.cpu().numpy()
)
if cfg.preprocess.extract_mel:
from utils.mel import extract_mel_features
if cfg.preprocess.mel_extract_mode == "taco":
_stft = TacotronSTFT(
sampling_rate=cfg.preprocess.sample_rate,
win_length=cfg.preprocess.win_size,
hop_length=cfg.preprocess.hop_size,
filter_length=cfg.preprocess.n_fft,
n_mel_channels=cfg.preprocess.n_mel,
mel_fmin=cfg.preprocess.fmin,
mel_fmax=cfg.preprocess.fmax,
)
mel = extract_mel_features(
wav_torch.unsqueeze(0), cfg.preprocess, taco=True, _stft=_stft
)
if cfg.preprocess.extract_duration:
mel = mel[:, : sum(durations)]
else:
mel = extract_mel_features(wav_torch.unsqueeze(0), cfg.preprocess)
save_feature(dataset_output, cfg.preprocess.mel_dir, uid, mel.cpu().numpy())
if cfg.preprocess.extract_energy:
if (
cfg.preprocess.energy_extract_mode == "from_mel"
and cfg.preprocess.extract_mel
):
energy = (mel.exp() ** 2).sum(0).sqrt().cpu().numpy()
elif cfg.preprocess.energy_extract_mode == "from_waveform":
energy = audio.energy(wav, cfg.preprocess)
elif cfg.preprocess.energy_extract_mode == "from_tacotron_stft":
_stft = TacotronSTFT(
sampling_rate=cfg.preprocess.sample_rate,
win_length=cfg.preprocess.win_size,
hop_length=cfg.preprocess.hop_size,
filter_length=cfg.preprocess.n_fft,
n_mel_channels=cfg.preprocess.n_mel,
mel_fmin=cfg.preprocess.fmin,
mel_fmax=cfg.preprocess.fmax,
)
_, energy = audio.get_energy_from_tacotron(wav, _stft)
else:
assert cfg.preprocess.energy_extract_mode in [
"from_mel",
"from_waveform",
"from_tacotron_stft",
], f"{cfg.preprocess.energy_extract_mode} not in supported energy_extract_mode [from_mel, from_waveform, from_tacotron_stft]"
if cfg.preprocess.extract_duration:
energy = energy[: sum(durations)]
phone_energy = avg_phone_feature(energy, durations)
save_feature(
dataset_output, cfg.preprocess.phone_energy_dir, uid, phone_energy
)
save_feature(dataset_output, cfg.preprocess.energy_dir, uid, energy)
if cfg.preprocess.extract_pitch:
pitch = f0.get_f0(wav, cfg.preprocess)
if cfg.preprocess.extract_duration:
pitch = pitch[: sum(durations)]
phone_pitch = avg_phone_feature(pitch, durations, interpolation=True)
save_feature(
dataset_output, cfg.preprocess.phone_pitch_dir, uid, phone_pitch
)
save_feature(dataset_output, cfg.preprocess.pitch_dir, uid, pitch)
if cfg.preprocess.extract_uv:
assert isinstance(pitch, np.ndarray)
uv = pitch != 0
save_feature(dataset_output, cfg.preprocess.uv_dir, uid, uv)
if cfg.preprocess.extract_audio:
save_feature(dataset_output, cfg.preprocess.audio_dir, uid, wav)
if cfg.preprocess.extract_label:
if cfg.preprocess.is_mu_law:
# compress audio
wav = compress(wav, cfg.preprocess.bits)
label = audio_to_label(wav, cfg.preprocess.bits)
save_feature(dataset_output, cfg.preprocess.label_dir, uid, label)
if cfg.preprocess.extract_acoustic_token:
if cfg.preprocess.acoustic_token_extractor == "Encodec":
codes = extract_encodec_token(wav_path)
save_feature(
dataset_output, cfg.preprocess.acoustic_token_dir, uid, codes
)
def extract_utt_acoustic_features_tts(dataset_output, cfg, utt):
__extract_utt_acoustic_features(dataset_output, cfg, utt)
def extract_utt_acoustic_features_svc(dataset_output, cfg, utt):
"""Extract acoustic features from utterances (in single process)
Args:
dataset_output (str): directory to store acoustic features
cfg (dict): dictionary that stores configurations
utt (dict): utterance info including dataset, singer, uid:{singer}_{song}_{index},
path to utternace, duration, utternace index
"""
from utils import audio, f0, world, duration
uid = utt["Uid"]
wav_path = utt["Path"]
with torch.no_grad():
# Load audio data into tensor with sample rate of the config file
wav_torch, _ = audio.load_audio_torch(wav_path, cfg.preprocess.sample_rate)
wav = wav_torch.cpu().numpy()
# extract features
if cfg.preprocess.extract_mel:
from utils.mel import extract_mel_features
mel = extract_mel_features(wav_torch.unsqueeze(0), cfg.preprocess)
save_feature(dataset_output, cfg.preprocess.mel_dir, uid, mel.cpu().numpy())
if cfg.preprocess.extract_energy:
energy = (mel.exp() ** 2).sum(0).sqrt().cpu().numpy()
save_feature(dataset_output, cfg.preprocess.energy_dir, uid, energy)
if cfg.preprocess.extract_pitch:
pitch = f0.get_f0(wav, cfg.preprocess)
save_feature(dataset_output, cfg.preprocess.pitch_dir, uid, pitch)
if cfg.preprocess.extract_uv:
assert isinstance(pitch, np.ndarray)
uv = pitch != 0
save_feature(dataset_output, cfg.preprocess.uv_dir, uid, uv)
def extract_utt_acoustic_features_tta(dataset_output, cfg, utt):
__extract_utt_acoustic_features(dataset_output, cfg, utt)
def extract_utt_acoustic_features_vocoder(dataset_output, cfg, utt):
"""Extract acoustic features from utterances (in single process)
Args:
dataset_output (str): directory to store acoustic features
cfg (dict): dictionary that stores configurations
utt (dict): utterance info including dataset, singer, uid:{singer}_{song}_{index},
path to utternace, duration, utternace index
"""
from utils import audio, f0, world, duration
uid = utt["Uid"]
wav_path = utt["Path"]
with torch.no_grad():
# Load audio data into tensor with sample rate of the config file
wav_torch, _ = audio.load_audio_torch(wav_path, cfg.preprocess.sample_rate)
wav = wav_torch.cpu().numpy()
# extract features
if cfg.preprocess.extract_mel:
from utils.mel import extract_mel_features
mel = extract_mel_features(wav_torch.unsqueeze(0), cfg.preprocess)
save_feature(dataset_output, cfg.preprocess.mel_dir, uid, mel.cpu().numpy())
if cfg.preprocess.extract_energy:
if (
cfg.preprocess.energy_extract_mode == "from_mel"
and cfg.preprocess.extract_mel
):
energy = (mel.exp() ** 2).sum(0).sqrt().cpu().numpy()
elif cfg.preprocess.energy_extract_mode == "from_waveform":
energy = audio.energy(wav, cfg.preprocess)
else:
assert cfg.preprocess.energy_extract_mode in [
"from_mel",
"from_waveform",
], f"{cfg.preprocess.energy_extract_mode} not in supported energy_extract_mode [from_mel, from_waveform, from_tacotron_stft]"
save_feature(dataset_output, cfg.preprocess.energy_dir, uid, energy)
if cfg.preprocess.extract_pitch:
pitch = f0.get_f0(wav, cfg.preprocess)
save_feature(dataset_output, cfg.preprocess.pitch_dir, uid, pitch)
if cfg.preprocess.extract_uv:
assert isinstance(pitch, np.ndarray)
uv = pitch != 0
save_feature(dataset_output, cfg.preprocess.uv_dir, uid, uv)
if cfg.preprocess.extract_audio:
save_feature(dataset_output, cfg.preprocess.audio_dir, uid, wav)
if cfg.preprocess.extract_label:
if cfg.preprocess.is_mu_law:
# compress audio
wav = compress(wav, cfg.preprocess.bits)
label = audio_to_label(wav, cfg.preprocess.bits)
save_feature(dataset_output, cfg.preprocess.label_dir, uid, label)
def cal_normalized_mel(mel, dataset_name, cfg):
mel_min, mel_max = load_mel_extrema(cfg, dataset_name)
mel_norm = normalize_mel_channel(mel, mel_min, mel_max)
return mel_norm
def cal_mel_min_max(dataset, output_path, cfg, metadata=None):
dataset_output = os.path.join(output_path, dataset)
if metadata is None:
metadata = []
for dataset_type in ["train", "test"] if "eval" not in dataset else ["test"]:
dataset_file = os.path.join(dataset_output, "{}.json".format(dataset_type))
with open(dataset_file, "r") as f:
metadata.extend(json.load(f))
tmp_mel_min = []
tmp_mel_max = []
for item in metadata:
mel_path = os.path.join(
dataset_output, cfg.preprocess.mel_dir, item["Uid"] + ".npy"
)
if not os.path.exists(mel_path):
continue
mel = np.load(mel_path)
if mel.shape[0] != cfg.preprocess.n_mel:
mel = mel.T
# mel: (n_mels, T)
assert mel.shape[0] == cfg.preprocess.n_mel
tmp_mel_min.append(np.min(mel, axis=-1))
tmp_mel_max.append(np.max(mel, axis=-1))
mel_min = np.min(tmp_mel_min, axis=0)
mel_max = np.max(tmp_mel_max, axis=0)
## save mel min max data
mel_min_max_dir = os.path.join(dataset_output, cfg.preprocess.mel_min_max_stats_dir)
os.makedirs(mel_min_max_dir, exist_ok=True)
mel_min_path = os.path.join(mel_min_max_dir, "mel_min.npy")
mel_max_path = os.path.join(mel_min_max_dir, "mel_max.npy")
np.save(mel_min_path, mel_min)
np.save(mel_max_path, mel_max)
def denorm_for_pred_mels(cfg, dataset_name, split, pred):
"""
Args:
pred: a list whose every element is (frame_len, n_mels)
Return:
similar like pred
"""
mel_min, mel_max = load_mel_extrema(cfg.preprocess, dataset_name)
recovered_mels = [
denormalize_mel_channel(mel.T, mel_min, mel_max).T for mel in pred
]
return recovered_mels
def load_mel_extrema(cfg, dataset_name):
data_dir = os.path.join(cfg.processed_dir, dataset_name, cfg.mel_min_max_stats_dir)
min_file = os.path.join(data_dir, "mel_min.npy")
max_file = os.path.join(data_dir, "mel_max.npy")
mel_min = np.load(min_file)
mel_max = np.load(max_file)
return mel_min, mel_max
def denormalize_mel_channel(mel, mel_min, mel_max):
mel_min = np.expand_dims(mel_min, -1)
mel_max = np.expand_dims(mel_max, -1)
return (mel + 1) / 2 * (mel_max - mel_min + ZERO) + mel_min
def normalize_mel_channel(mel, mel_min, mel_max):
mel_min = np.expand_dims(mel_min, -1)
mel_max = np.expand_dims(mel_max, -1)
return (mel - mel_min) / (mel_max - mel_min + ZERO) * 2 - 1
def normalize(dataset, feat_dir, cfg):
dataset_output = os.path.join(cfg.preprocess.processed_dir, dataset)
print(f"normalize {feat_dir}")
max_value = np.finfo(np.float64).min
min_value = np.finfo(np.float64).max
scaler = StandardScaler()
feat_files = os.listdir(os.path.join(dataset_output, feat_dir))
for feat_file in tqdm(feat_files):
feat_file = os.path.join(dataset_output, feat_dir, feat_file)
if not feat_file.endswith(".npy"):
continue
feat = np.load(feat_file)
max_value = max(max_value, max(feat))
min_value = min(min_value, min(feat))
scaler.partial_fit(feat.reshape((-1, 1)))
mean = scaler.mean_[0]
std = scaler.scale_[0]
stat = np.array([min_value, max_value, mean, std])
stat_npy = os.path.join(dataset_output, f"{feat_dir}_stat.npy")
np.save(stat_npy, stat)
return mean, std, min_value, max_value
def load_normalized(feat_dir, dataset_name, cfg):
dataset_output = os.path.join(cfg.preprocess.processed_dir, dataset_name)
stat_npy = os.path.join(dataset_output, f"{feat_dir}_stat.npy")
min_value, max_value, mean, std = np.load(stat_npy)
return mean, std, min_value, max_value
def cal_pitch_statistics_svc(dataset, output_path, cfg, metadata=None):
# path of dataset
dataset_dir = os.path.join(output_path, dataset)
save_dir = os.path.join(dataset_dir, cfg.preprocess.pitch_dir)
os.makedirs(save_dir, exist_ok=True)
if has_existed(os.path.join(save_dir, "statistics.json")):
return
if metadata is None:
# load singers and ids
singers = json.load(open(os.path.join(dataset_dir, "singers.json"), "r"))
# combine train and test metadata
metadata = []
for dataset_type in ["train", "test"] if "eval" not in dataset else ["test"]:
dataset_file = os.path.join(dataset_dir, "{}.json".format(dataset_type))
with open(dataset_file, "r") as f:
metadata.extend(json.load(f))
else:
singers = list(set([item["Singer"] for item in metadata]))
singers = {
"{}_{}".format(dataset, name): idx for idx, name in enumerate(singers)
}
# use different scalers for each singer
pitch_scalers = [[] for _ in range(len(singers))]
total_pitch_scalers = [[] for _ in range(len(singers))]
for utt_info in tqdm(metadata, desc="Loading F0..."):
# utt = f'{utt_info["Dataset"]}_{utt_info["Uid"]}'
singer = utt_info["Singer"]
pitch_path = os.path.join(
dataset_dir, cfg.preprocess.pitch_dir, utt_info["Uid"] + ".npy"
)
# total_pitch contains all pitch including unvoiced frames
if not os.path.exists(pitch_path):
continue
total_pitch = np.load(pitch_path)
assert len(total_pitch) > 0
# pitch contains only voiced frames
pitch = total_pitch[total_pitch != 0]
spkid = singers[f"{replace_augment_name(dataset)}_{singer}"]
# update pitch scalers
pitch_scalers[spkid].extend(pitch.tolist())
# update total pitch scalers
total_pitch_scalers[spkid].extend(total_pitch.tolist())
# save pitch statistics for each singer in dict
sta_dict = {}
for singer in tqdm(singers, desc="Singers statistics"):
spkid = singers[singer]
# voiced pitch statistics
mean, std, min, max, median = (
np.mean(pitch_scalers[spkid]),
np.std(pitch_scalers[spkid]),
np.min(pitch_scalers[spkid]),
np.max(pitch_scalers[spkid]),
np.median(pitch_scalers[spkid]),
)
# total pitch statistics
mean_t, std_t, min_t, max_t, median_t = (
np.mean(total_pitch_scalers[spkid]),
np.std(total_pitch_scalers[spkid]),
np.min(total_pitch_scalers[spkid]),
np.max(total_pitch_scalers[spkid]),
np.median(total_pitch_scalers[spkid]),
)
sta_dict[singer] = {
"voiced_positions": {
"mean": mean,
"std": std,
"median": median,
"min": min,
"max": max,
},
"total_positions": {
"mean": mean_t,
"std": std_t,
"median": median_t,
"min": min_t,
"max": max_t,
},
}
# save statistics
with open(os.path.join(save_dir, "statistics.json"), "w") as f:
json.dump(sta_dict, f, indent=4, ensure_ascii=False)
def cal_pitch_statistics(dataset, output_path, cfg):
# path of dataset
dataset_dir = os.path.join(output_path, dataset)
if cfg.preprocess.use_phone_pitch:
pitch_dir = cfg.preprocess.phone_pitch_dir
else:
pitch_dir = cfg.preprocess.pitch_dir
save_dir = os.path.join(dataset_dir, pitch_dir)
os.makedirs(save_dir, exist_ok=True)
if has_existed(os.path.join(save_dir, "statistics.json")):
return
# load singers and ids
singers = json.load(open(os.path.join(dataset_dir, "singers.json"), "r"))
# combine train and test metadata
metadata = []
for dataset_type in ["train", "test"] if "eval" not in dataset else ["test"]:
dataset_file = os.path.join(dataset_dir, "{}.json".format(dataset_type))
with open(dataset_file, "r") as f:
metadata.extend(json.load(f))
# use different scalers for each singer
pitch_scalers = [[] for _ in range(len(singers))]
total_pitch_scalers = [[] for _ in range(len(singers))]
for utt_info in metadata:
utt = f'{utt_info["Dataset"]}_{utt_info["Uid"]}'
singer = utt_info["Singer"]
pitch_path = os.path.join(dataset_dir, pitch_dir, utt_info["Uid"] + ".npy")
# total_pitch contains all pitch including unvoiced frames
if not os.path.exists(pitch_path):
continue
total_pitch = np.load(pitch_path)
assert len(total_pitch) > 0
# pitch contains only voiced frames
# pitch = total_pitch[total_pitch != 0]
if cfg.preprocess.pitch_remove_outlier:
pitch = remove_outlier(total_pitch)
spkid = singers[f"{replace_augment_name(dataset)}_{singer}"]
# update pitch scalers
pitch_scalers[spkid].extend(pitch.tolist())
# update total pitch scalers
total_pitch_scalers[spkid].extend(total_pitch.tolist())
# save pitch statistics for each singer in dict
sta_dict = {}
for singer in singers:
spkid = singers[singer]
# voiced pitch statistics
mean, std, min, max, median = (
np.mean(pitch_scalers[spkid]),
np.std(pitch_scalers[spkid]),
np.min(pitch_scalers[spkid]),
np.max(pitch_scalers[spkid]),
np.median(pitch_scalers[spkid]),
)
# total pitch statistics
mean_t, std_t, min_t, max_t, median_t = (
np.mean(total_pitch_scalers[spkid]),
np.std(total_pitch_scalers[spkid]),
np.min(total_pitch_scalers[spkid]),
np.max(total_pitch_scalers[spkid]),
np.median(total_pitch_scalers[spkid]),
)
sta_dict[singer] = {
"voiced_positions": {
"mean": mean,
"std": std,
"median": median,
"min": min,
"max": max,
},
"total_positions": {
"mean": mean_t,
"std": std_t,
"median": median_t,
"min": min_t,
"max": max_t,
},
}
# save statistics
with open(os.path.join(save_dir, "statistics.json"), "w") as f:
json.dump(sta_dict, f, indent=4, ensure_ascii=False)
def cal_energy_statistics(dataset, output_path, cfg):
# path of dataset
dataset_dir = os.path.join(output_path, dataset)
if cfg.preprocess.use_phone_energy:
energy_dir = cfg.preprocess.phone_energy_dir
else:
energy_dir = cfg.preprocess.energy_dir
save_dir = os.path.join(dataset_dir, energy_dir)
os.makedirs(save_dir, exist_ok=True)
print(os.path.join(save_dir, "statistics.json"))
if has_existed(os.path.join(save_dir, "statistics.json")):
return
# load singers and ids
singers = json.load(open(os.path.join(dataset_dir, "singers.json"), "r"))
# combine train and test metadata
metadata = []
for dataset_type in ["train", "test"] if "eval" not in dataset else ["test"]:
dataset_file = os.path.join(dataset_dir, "{}.json".format(dataset_type))
with open(dataset_file, "r") as f:
metadata.extend(json.load(f))
# use different scalers for each singer
energy_scalers = [[] for _ in range(len(singers))]
total_energy_scalers = [[] for _ in range(len(singers))]
for utt_info in metadata:
utt = f'{utt_info["Dataset"]}_{utt_info["Uid"]}'
singer = utt_info["Singer"]
energy_path = os.path.join(dataset_dir, energy_dir, utt_info["Uid"] + ".npy")
# total_energy contains all energy including unvoiced frames
if not os.path.exists(energy_path):
continue
total_energy = np.load(energy_path)
assert len(total_energy) > 0
# energy contains only voiced frames
# energy = total_energy[total_energy != 0]
if cfg.preprocess.energy_remove_outlier:
energy = remove_outlier(total_energy)
spkid = singers[f"{replace_augment_name(dataset)}_{singer}"]
# update energy scalers
energy_scalers[spkid].extend(energy.tolist())
# update total energyscalers
total_energy_scalers[spkid].extend(total_energy.tolist())
# save energy statistics for each singer in dict
sta_dict = {}
for singer in singers:
spkid = singers[singer]
# voiced energy statistics
mean, std, min, max, median = (
np.mean(energy_scalers[spkid]),
np.std(energy_scalers[spkid]),
np.min(energy_scalers[spkid]),
np.max(energy_scalers[spkid]),
np.median(energy_scalers[spkid]),
)
# total energy statistics
mean_t, std_t, min_t, max_t, median_t = (
np.mean(total_energy_scalers[spkid]),
np.std(total_energy_scalers[spkid]),
np.min(total_energy_scalers[spkid]),
np.max(total_energy_scalers[spkid]),
np.median(total_energy_scalers[spkid]),
)
sta_dict[singer] = {
"voiced_positions": {
"mean": mean,
"std": std,
"median": median,
"min": min,
"max": max,
},
"total_positions": {
"mean": mean_t,
"std": std_t,
"median": median_t,
"min": min_t,
"max": max_t,
},
}
# save statistics
with open(os.path.join(save_dir, "statistics.json"), "w") as f:
json.dump(sta_dict, f, indent=4, ensure_ascii=False)
def copy_acoustic_features(metadata, dataset_dir, src_dataset_dir, cfg):
"""Copy acoustic features from src_dataset_dir to dataset_dir
Args:
metadata (dict): dictionary that stores data in train.json and test.json files
dataset_dir (str): directory to store acoustic features
src_dataset_dir (str): directory to store acoustic features
cfg (dict): dictionary that stores configurations
"""
if cfg.preprocess.extract_mel:
if not has_existed(os.path.join(dataset_dir, cfg.preprocess.mel_dir)):
os.makedirs(
os.path.join(dataset_dir, cfg.preprocess.mel_dir), exist_ok=True
)
print(
"Copying mel features from {} to {}...".format(
src_dataset_dir, dataset_dir
)
)
for utt_info in tqdm(metadata):
src_mel_path = os.path.join(
src_dataset_dir, cfg.preprocess.mel_dir, utt_info["Uid"] + ".npy"
)
dst_mel_path = os.path.join(
dataset_dir, cfg.preprocess.mel_dir, utt_info["Uid"] + ".npy"
)
# create soft-links
if not os.path.exists(dst_mel_path):
os.symlink(src_mel_path, dst_mel_path)
if cfg.preprocess.extract_energy:
if not has_existed(os.path.join(dataset_dir, cfg.preprocess.energy_dir)):
os.makedirs(
os.path.join(dataset_dir, cfg.preprocess.energy_dir), exist_ok=True
)
print(
"Copying energy features from {} to {}...".format(
src_dataset_dir, dataset_dir
)
)
for utt_info in tqdm(metadata):
src_energy_path = os.path.join(
src_dataset_dir, cfg.preprocess.energy_dir, utt_info["Uid"] + ".npy"
)
dst_energy_path = os.path.join(
dataset_dir, cfg.preprocess.energy_dir, utt_info["Uid"] + ".npy"
)
# create soft-links
if not os.path.exists(dst_energy_path):
os.symlink(src_energy_path, dst_energy_path)
if cfg.preprocess.extract_pitch:
if not has_existed(os.path.join(dataset_dir, cfg.preprocess.pitch_dir)):
os.makedirs(
os.path.join(dataset_dir, cfg.preprocess.pitch_dir), exist_ok=True
)
print(
"Copying pitch features from {} to {}...".format(
src_dataset_dir, dataset_dir
)
)
for utt_info in tqdm(metadata):
src_pitch_path = os.path.join(
src_dataset_dir, cfg.preprocess.pitch_dir, utt_info["Uid"] + ".npy"
)
dst_pitch_path = os.path.join(
dataset_dir, cfg.preprocess.pitch_dir, utt_info["Uid"] + ".npy"
)
# create soft-links
if not os.path.exists(dst_pitch_path):
os.symlink(src_pitch_path, dst_pitch_path)
if cfg.preprocess.extract_uv:
if not has_existed(os.path.join(dataset_dir, cfg.preprocess.uv_dir)):
os.makedirs(
os.path.join(dataset_dir, cfg.preprocess.uv_dir), exist_ok=True
)
print(
"Copying uv features from {} to {}...".format(
src_dataset_dir, dataset_dir
)
)
for utt_info in tqdm(metadata):
src_uv_path = os.path.join(
src_dataset_dir, cfg.preprocess.uv_dir, utt_info["Uid"] + ".npy"
)
dst_uv_path = os.path.join(
dataset_dir, cfg.preprocess.uv_dir, utt_info["Uid"] + ".npy"
)
# create soft-links
if not os.path.exists(dst_uv_path):
os.symlink(src_uv_path, dst_uv_path)
if cfg.preprocess.extract_audio:
if not has_existed(os.path.join(dataset_dir, cfg.preprocess.audio_dir)):
os.makedirs(
os.path.join(dataset_dir, cfg.preprocess.audio_dir), exist_ok=True
)
print(
"Copying audio features from {} to {}...".format(
src_dataset_dir, dataset_dir
)
)
for utt_info in tqdm(metadata):
src_audio_path = os.path.join(
src_dataset_dir, cfg.preprocess.audio_dir, utt_info["Uid"] + ".npy"
)
dst_audio_path = os.path.join(
dataset_dir, cfg.preprocess.audio_dir, utt_info["Uid"] + ".npy"
)
# create soft-links
if not os.path.exists(dst_audio_path):
os.symlink(src_audio_path, dst_audio_path)
if cfg.preprocess.extract_label:
if not has_existed(os.path.join(dataset_dir, cfg.preprocess.label_dir)):
os.makedirs(
os.path.join(dataset_dir, cfg.preprocess.label_dir), exist_ok=True
)
print(
"Copying label features from {} to {}...".format(
src_dataset_dir, dataset_dir
)
)
for utt_info in tqdm(metadata):
src_label_path = os.path.join(
src_dataset_dir, cfg.preprocess.label_dir, utt_info["Uid"] + ".npy"
)
dst_label_path = os.path.join(
dataset_dir, cfg.preprocess.label_dir, utt_info["Uid"] + ".npy"
)
# create soft-links
if not os.path.exists(dst_label_path):
os.symlink(src_label_path, dst_label_path)
def align_duration_mel(dataset, output_path, cfg):
print("align the duration and mel")
dataset_dir = os.path.join(output_path, dataset)
metadata = []
for dataset_type in ["train", "test"] if "eval" not in dataset else ["test"]:
dataset_file = os.path.join(dataset_dir, "{}.json".format(dataset_type))
with open(dataset_file, "r") as f:
metadata.extend(json.load(f))
utt2dur = {}
for index in tqdm(range(len(metadata))):
utt_info = metadata[index]
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
mel_path = os.path.join(dataset_dir, cfg.preprocess.mel_dir, uid + ".npy")
mel = np.load(mel_path).transpose(1, 0)
duration_path = os.path.join(
dataset_dir, cfg.preprocess.duration_dir, uid + ".npy"
)
duration = np.load(duration_path)
if sum(duration) != mel.shape[0]:
duration_sum = sum(duration)
mel_len = mel.shape[0]
mismatch = abs(duration_sum - mel_len)
assert mismatch <= 5, "duration and mel length mismatch!"
cloned = np.array(duration, copy=True)
if duration_sum > mel_len:
for j in range(1, len(duration) - 1):
if mismatch == 0:
break
dur_val = cloned[-j]
if dur_val >= mismatch:
cloned[-j] -= mismatch
mismatch -= dur_val
break
else:
cloned[-j] = 0
mismatch -= dur_val
elif duration_sum < mel_len:
cloned[-1] += mismatch
duration = cloned
utt2dur[utt] = duration
np.save(duration_path, duration)
return utt2dur
|