File size: 2,959 Bytes
0883aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

"""Conv2d Module with Valid Padding"""

import torch.nn.functional as F
from torch.nn.modules.conv import _ConvNd, _size_2_t, Union, _pair, Tensor, Optional


class Conv2dValid(_ConvNd):
    """
    Conv2d operator for VALID mode padding.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: _size_2_t,
        stride: _size_2_t = 1,
        padding: Union[str, _size_2_t] = 0,
        dilation: _size_2_t = 1,
        groups: int = 1,
        bias: bool = True,
        padding_mode: str = "zeros",  # TODO: refine this type
        device=None,
        dtype=None,
        valid_trigx: bool = False,
        valid_trigy: bool = False,
    ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        kernel_size_ = _pair(kernel_size)
        stride_ = _pair(stride)
        padding_ = padding if isinstance(padding, str) else _pair(padding)
        dilation_ = _pair(dilation)
        super(Conv2dValid, self).__init__(
            in_channels,
            out_channels,
            kernel_size_,
            stride_,
            padding_,
            dilation_,
            False,
            _pair(0),
            groups,
            bias,
            padding_mode,
            **factory_kwargs,
        )
        self.valid_trigx = valid_trigx
        self.valid_trigy = valid_trigy

    def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
        validx, validy = 0, 0
        if self.valid_trigx:
            validx = (
                input.size(-2) * (self.stride[-2] - 1) - 1 + self.kernel_size[-2]
            ) // 2
        if self.valid_trigy:
            validy = (
                input.size(-1) * (self.stride[-1] - 1) - 1 + self.kernel_size[-1]
            ) // 2
        return F.conv2d(
            input,
            weight,
            bias,
            self.stride,
            (validx, validy),
            self.dilation,
            self.groups,
        )

    def forward(self, input: Tensor) -> Tensor:
        return self._conv_forward(input, self.weight, self.bias)