File size: 4,755 Bytes
0883aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import json
import os
from collections import defaultdict
from tqdm import tqdm


def get_uids_and_wav_paths(cfg, dataset, dataset_type):
    assert dataset == "bigdata"
    dataset_dir = os.path.join(
        cfg.OUTPUT_PATH,
        "preprocess/{}_version".format(cfg.PREPROCESS_VERSION),
        "bigdata/{}".format(cfg.BIGDATA_VERSION),
    )
    dataset_file = os.path.join(
        dataset_dir, "{}.json".format(dataset_type.split("_")[-1])
    )
    with open(dataset_file, "r") as f:
        utterances = json.load(f)

    # Uids
    uids = [u["Uid"] for u in utterances]

    # Wav paths
    wav_paths = [u["Path"] for u in utterances]

    return uids, wav_paths


def take_duration(utt):
    return utt["Duration"]


def main(output_path, cfg):
    datasets = cfg.dataset

    print("-" * 10)
    print("Preparing samples for bigdata...")
    print("Including: \n{}\n".format("\n".join(datasets)))

    datasets.sort()
    bigdata_version = "_".join(datasets)

    save_dir = os.path.join(output_path, bigdata_version)
    os.makedirs(save_dir, exist_ok=True)

    train_output_file = os.path.join(save_dir, "train.json")
    test_output_file = os.path.join(save_dir, "test.json")
    singer_dict_file = os.path.join(save_dir, cfg.preprocess.spk2id)
    utt2singer_file = os.path.join(save_dir, cfg.preprocess.utt2spk)
    utt2singer = open(utt2singer_file, "a+")
    # We select songs of standard samples as test songs
    train = []
    test = []

    train_total_duration = 0
    test_total_duration = 0

    # Singer unique names
    singer_names = set()

    for dataset in datasets:
        dataset_path = os.path.join(output_path, dataset)
        train_json = os.path.join(dataset_path, "train.json")
        test_json = os.path.join(dataset_path, "test.json")

        with open(train_json, "r", encoding="utf-8") as f:
            train_utterances = json.load(f)

        with open(test_json, "r", encoding="utf-8") as f:
            test_utterances = json.load(f)

        for utt in tqdm(train_utterances):
            train.append(utt)
            train_total_duration += utt["Duration"]
            singer_names.add("{}_{}".format(utt["Dataset"], utt["Singer"]))
            utt2singer.write(
                "{}_{}\t{}_{}\n".format(
                    utt["Dataset"], utt["Uid"], utt["Dataset"], utt["Singer"]
                )
            )

        for utt in test_utterances:
            test.append(utt)
            test_total_duration += utt["Duration"]
            singer_names.add("{}_{}".format(utt["Dataset"], utt["Singer"]))
            utt2singer.write(
                "{}_{}\t{}_{}\n".format(
                    utt["Dataset"], utt["Uid"], utt["Dataset"], utt["Singer"]
                )
            )

    utt2singer.close()

    train.sort(key=take_duration)
    test.sort(key=take_duration)
    print("#Train = {}, #Test = {}".format(len(train), len(test)))
    print(
        "#Train hours= {}, #Test hours= {}".format(
            train_total_duration / 3600, test_total_duration / 3600
        )
    )

    # Singer Look Up Table
    singer_names = list(singer_names)
    singer_names.sort()
    singer_lut = {name: i for i, name in enumerate(singer_names)}
    print("#Singers: {}\n".format(len(singer_lut)))

    # Save
    with open(train_output_file, "w") as f:
        json.dump(train, f, indent=4, ensure_ascii=False)
    with open(test_output_file, "w") as f:
        json.dump(test, f, indent=4, ensure_ascii=False)
    with open(singer_dict_file, "w") as f:
        json.dump(singer_lut, f, indent=4, ensure_ascii=False)

    # Save meta info
    meta_info = {
        "datasets": datasets,
        "train": {"size": len(train), "hours": round(train_total_duration / 3600, 4)},
        "test": {"size": len(test), "hours": round(test_total_duration / 3600, 4)},
        "singers": {"size": len(singer_lut)},
    }
    singer2mins = defaultdict(float)
    for utt in train:
        dataset, singer, duration = utt["Dataset"], utt["Singer"], utt["Duration"]
        singer2mins["{}_{}".format(dataset, singer)] += duration / 60
    singer2mins = sorted(singer2mins.items(), key=lambda x: x[1], reverse=True)
    singer2mins = dict(
        zip([i[0] for i in singer2mins], [round(i[1], 2) for i in singer2mins])
    )
    meta_info["singers"]["training_minutes"] = singer2mins

    with open(os.path.join(save_dir, "meta_info.json"), "w") as f:
        json.dump(meta_info, f, indent=4, ensure_ascii=False)

    for singer, min in singer2mins.items():
        print("Singer {}: {} mins".format(singer, min))
    print("-" * 10, "\n")