Spaces:
Running
on
A10G
Running
on
A10G
File size: 5,665 Bytes
df2accb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch import nn
from modules.vocoder_blocks import *
from einops import rearrange
import torchaudio.transforms as T
from nnAudio import features
LRELU_SLOPE = 0.1
class DiscriminatorCQT(nn.Module):
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
super(DiscriminatorCQT, self).__init__()
self.cfg = cfg
self.filters = cfg.model.mssbcqtd.filters
self.max_filters = cfg.model.mssbcqtd.max_filters
self.filters_scale = cfg.model.mssbcqtd.filters_scale
self.kernel_size = (3, 9)
self.dilations = cfg.model.mssbcqtd.dilations
self.stride = (1, 2)
self.in_channels = cfg.model.mssbcqtd.in_channels
self.out_channels = cfg.model.mssbcqtd.out_channels
self.fs = cfg.preprocess.sample_rate
self.hop_length = hop_length
self.n_octaves = n_octaves
self.bins_per_octave = bins_per_octave
self.cqt_transform = features.cqt.CQT2010v2(
sr=self.fs * 2,
hop_length=self.hop_length,
n_bins=self.bins_per_octave * self.n_octaves,
bins_per_octave=self.bins_per_octave,
output_format="Complex",
pad_mode="constant",
)
self.conv_pres = nn.ModuleList()
for i in range(self.n_octaves):
self.conv_pres.append(
NormConv2d(
self.in_channels * 2,
self.in_channels * 2,
kernel_size=self.kernel_size,
padding=get_2d_padding(self.kernel_size),
)
)
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(
self.in_channels * 2,
self.filters,
kernel_size=self.kernel_size,
padding=get_2d_padding(self.kernel_size),
)
)
in_chs = min(self.filters_scale * self.filters, self.max_filters)
for i, dilation in enumerate(self.dilations):
out_chs = min(
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=self.kernel_size,
stride=self.stride,
dilation=(dilation, 1),
padding=get_2d_padding(self.kernel_size, (dilation, 1)),
norm="weight_norm",
)
)
in_chs = out_chs
out_chs = min(
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
self.max_filters,
)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
norm="weight_norm",
)
)
self.conv_post = NormConv2d(
out_chs,
self.out_channels,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
norm="weight_norm",
)
self.activation = torch.nn.LeakyReLU(negative_slope=LRELU_SLOPE)
self.resample = T.Resample(orig_freq=self.fs, new_freq=self.fs * 2)
def forward(self, x):
fmap = []
x = self.resample(x)
z = self.cqt_transform(x)
z_amplitude = z[:, :, :, 0].unsqueeze(1)
z_phase = z[:, :, :, 1].unsqueeze(1)
z = torch.cat([z_amplitude, z_phase], dim=1)
z = rearrange(z, "b c w t -> b c t w")
latent_z = []
for i in range(self.n_octaves):
latent_z.append(
self.conv_pres[i](
z[
:,
:,
:,
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
]
)
)
latent_z = torch.cat(latent_z, dim=-1)
for i, l in enumerate(self.convs):
latent_z = l(latent_z)
latent_z = self.activation(latent_z)
fmap.append(latent_z)
latent_z = self.conv_post(latent_z)
return latent_z, fmap
class MultiScaleSubbandCQTDiscriminator(nn.Module):
def __init__(self, cfg):
super(MultiScaleSubbandCQTDiscriminator, self).__init__()
self.cfg = cfg
self.discriminators = nn.ModuleList(
[
DiscriminatorCQT(
cfg,
hop_length=cfg.model.mssbcqtd.hop_lengths[i],
n_octaves=cfg.model.mssbcqtd.n_octaves[i],
bins_per_octave=cfg.model.mssbcqtd.bins_per_octaves[i],
)
for i in range(len(cfg.model.mssbcqtd.hop_lengths))
]
)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for disc in self.discriminators:
y_d_r, fmap_r = disc(y)
y_d_g, fmap_g = disc(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|