File size: 12,836 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import numpy as np
import torch.utils.data
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from processors.acoustic_extractor import cal_normalized_mel
from text import text_to_sequence
from text.text_token_collation import phoneIDCollation


class BaseDataset(torch.utils.data.Dataset):
    def __init__(self, cfg, dataset, is_valid=False):
        """
        Args:
            cfg: config
            dataset: dataset name
            is_valid: whether to use train or valid dataset
        """

        assert isinstance(dataset, str)

        # self.data_root = processed_data_dir
        self.cfg = cfg
        
        processed_data_dir = os.path.join(cfg.preprocess.processed_dir, dataset)
        meta_file = cfg.preprocess.valid_file if is_valid else cfg.preprocess.train_file
        self.metafile_path = os.path.join(processed_data_dir, meta_file)
        self.metadata = self.get_metadata()

        

        '''
        load spk2id and utt2spk from json file
            spk2id: {spk1: 0, spk2: 1, ...}
            utt2spk: {dataset_uid: spk1, ...}
        '''
        if cfg.preprocess.use_spkid:
            spk2id_path = os.path.join(processed_data_dir, cfg.preprocess.spk2id)
            with open(spk2id_path, "r") as f:
                self.spk2id = json.load(f)
            
            utt2spk_path = os.path.join(processed_data_dir, cfg.preprocess.utt2spk)
            self.utt2spk = dict()
            with open(utt2spk_path, "r") as f:
                for line in f.readlines():
                    utt, spk = line.strip().split('\t')
                    self.utt2spk[utt] = spk
        

        if cfg.preprocess.use_uv:
            self.utt2uv_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)
                self.utt2uv_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.uv_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_frame_pitch:
            self.utt2frame_pitch_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2frame_pitch_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.pitch_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_frame_energy:
            self.utt2frame_energy_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2frame_energy_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.energy_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_mel:
            self.utt2mel_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2mel_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.mel_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_linear:
            self.utt2linear_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2linear_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.linear_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_audio:
            self.utt2audio_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2audio_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.audio_dir,
                    uid + ".npy",
                )
        elif cfg.preprocess.use_label:
            self.utt2label_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2label_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.label_dir,
                    uid + ".npy",
                )
        elif cfg.preprocess.use_one_hot:
            self.utt2one_hot_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2one_hot_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.one_hot_dir,
                    uid + ".npy",
                )

        if cfg.preprocess.use_text or cfg.preprocess.use_phone:
            self.utt2seq = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                if cfg.preprocess.use_text:
                    text = utt_info["Text"]
                    sequence = text_to_sequence(text, cfg.preprocess.text_cleaners)
                elif cfg.preprocess.use_phone:
                    # load phoneme squence from phone file
                    phone_path = os.path.join(processed_data_dir, 
                                            cfg.preprocess.phone_dir,
                                            uid+'.phone'
                                            )
                    with open(phone_path, 'r') as fin:
                        phones = fin.readlines()
                        assert len(phones) == 1
                        phones = phones[0].strip()
                    phones_seq = phones.split(' ')

                    phon_id_collator = phoneIDCollation(cfg, dataset=dataset)
                    sequence = phon_id_collator.get_phone_id_sequence(cfg, phones_seq)

                self.utt2seq[utt] = sequence

        
    def get_metadata(self):
        with open(self.metafile_path, "r", encoding="utf-8") as f:
            metadata = json.load(f)

        return metadata

    def get_dataset_name(self):
        return self.metadata[0]["Dataset"]

    def __getitem__(self, index):
        utt_info = self.metadata[index]

        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        single_feature = dict()

        if self.cfg.preprocess.use_spkid:
            single_feature["spk_id"] = np.array(
                [self.spk2id[self.utt2spk[utt]]], dtype=np.int32
            )

        if self.cfg.preprocess.use_mel:
            mel = np.load(self.utt2mel_path[utt])
            assert mel.shape[0] == self.cfg.preprocess.n_mel  # [n_mels, T]
            if self.cfg.preprocess.use_min_max_norm_mel:
                # do mel norm
                mel = cal_normalized_mel(mel, utt_info["Dataset"], self.cfg.preprocess)

            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = mel.shape[1]
            single_feature["mel"] = mel.T  # [T, n_mels]

        if self.cfg.preprocess.use_linear:
            linear = np.load(self.utt2linear_path[utt])
            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = linear.shape[1]
            single_feature["linear"] = linear.T  # [T, n_linear]

        if self.cfg.preprocess.use_frame_pitch:
            frame_pitch_path = self.utt2frame_pitch_path[utt]
            frame_pitch = np.load(frame_pitch_path)
            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = len(frame_pitch)
            aligned_frame_pitch = align_length(
                frame_pitch, single_feature["target_len"]
            )
            single_feature["frame_pitch"] = aligned_frame_pitch

            if self.cfg.preprocess.use_uv:
                frame_uv_path = self.utt2uv_path[utt]
                frame_uv = np.load(frame_uv_path)
                aligned_frame_uv = align_length(frame_uv, single_feature["target_len"])
                aligned_frame_uv = [
                    0 if frame_uv else 1 for frame_uv in aligned_frame_uv
                ]
                aligned_frame_uv = np.array(aligned_frame_uv)
                single_feature["frame_uv"] = aligned_frame_uv

        if self.cfg.preprocess.use_frame_energy:
            frame_energy_path = self.utt2frame_energy_path[utt]
            frame_energy = np.load(frame_energy_path)
            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = len(frame_energy)
            aligned_frame_energy = align_length(
                frame_energy, single_feature["target_len"]
            )
            single_feature["frame_energy"] = aligned_frame_energy

        if self.cfg.preprocess.use_audio:
            audio = np.load(self.utt2audio_path[utt])
            single_feature["audio"] = audio
            single_feature["audio_len"] = audio.shape[0]

        if self.cfg.preprocess.use_phone or self.cfg.preprocess.use_text:
            single_feature["phone_seq"] = np.array(self.utt2seq[utt])
            single_feature["phone_len"] = len(self.utt2seq[utt])

        return single_feature

    def __len__(self):
        return len(self.metadata)


class BaseCollator(object):
    """Zero-pads model inputs and targets based on number of frames per step"""

    def __init__(self, cfg):
        self.cfg = cfg

    def __call__(self, batch):
        packed_batch_features = dict()

        # mel: [b, T, n_mels]
        # frame_pitch, frame_energy: [1, T]
        # target_len: [1]
        # spk_id: [b, 1]
        # mask: [b, T, 1]

        for key in batch[0].keys():
            if key == "target_len":
                packed_batch_features["target_len"] = torch.LongTensor(
                    [b["target_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "phone_len":
                packed_batch_features["phone_len"] = torch.LongTensor(
                    [b["phone_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["phone_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["phn_mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "audio_len":
                packed_batch_features["audio_len"] = torch.LongTensor(
                    [b["audio_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["audio_len"], 1), dtype=torch.long) for b in batch
                ]
            else:
                values = [torch.from_numpy(b[key]) for b in batch]
                packed_batch_features[key] = pad_sequence(
                    values, batch_first=True, padding_value=0
                )
        return packed_batch_features


class BaseTestDataset(torch.utils.data.Dataset):
    def __init__(self, cfg, args):
        raise NotImplementedError
          

    def get_metadata(self):
        raise NotImplementedError

    def __getitem__(self, index):
        raise NotImplementedError

    def __len__(self):
        return len(self.metadata)


class BaseTestCollator(object):
    """Zero-pads model inputs and targets based on number of frames per step"""

    def __init__(self, cfg):
        raise NotImplementedError

    def __call__(self, batch):
        raise NotImplementedError