Spaces:
Running
on
A10G
Running
on
A10G
File size: 6,602 Bytes
0883aa1 df2accb 0883aa1 df2accb 0883aa1 df2accb 0883aa1 df2accb 0883aa1 df2accb 0883aa1 df2accb 106c893 71d89fb 7c4481d a5ae3c5 7c4481d 71d89fb 106c893 df2accb 106c893 0883aa1 106c893 df2accb 7dd3218 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import gradio as gr
import os
import inference
SUPPORTED_TARGET_SINGERS = {
"Adele": "vocalist_l1_Adele",
"Beyonce": "vocalist_l1_Beyonce",
"Bruno Mars": "vocalist_l1_BrunoMars",
"John Mayer": "vocalist_l1_JohnMayer",
"Michael Jackson": "vocalist_l1_MichaelJackson",
"Taylor Swift": "vocalist_l1_TaylorSwift",
"Jacky Cheung 张学友": "vocalist_l1_张学友",
"Jian Li 李健": "vocalist_l1_李健",
"Feng Wang 汪峰": "vocalist_l1_汪峰",
"Faye Wong 王菲": "vocalist_l1_王菲",
"Yijie Shi 石倚洁": "vocalist_l1_石倚洁",
"Tsai Chin 蔡琴": "vocalist_l1_蔡琴",
"Ying Na 那英": "vocalist_l1_那英",
"Eason Chan 陈奕迅": "vocalist_l1_陈奕迅",
"David Tao 陶喆": "vocalist_l1_陶喆",
}
def svc_inference(
source_audio_path,
target_singer,
key_shift_mode="Auto Shift",
key_shift_num=0,
diffusion_steps=1000,
):
#### Prepare source audio file ####
print("source_audio_path: {}".format(source_audio_path))
audio_file = source_audio_path.split("/")[-1]
audio_name = audio_file.split(".")[0]
source_audio_dir = source_audio_path.replace(audio_file, "")
### Target Singer ###
target_singer = SUPPORTED_TARGET_SINGERS[target_singer]
### Inference ###
if key_shift_mode == "Auto Shift":
key_shift = "autoshift"
else:
key_shift = key_shift_num
args_list = ["--config", "ckpts/svc/vocalist_l1_contentvec+whisper/args.json"]
args_list += ["--acoustics_dir", "ckpts/svc/vocalist_l1_contentvec+whisper"]
args_list += ["--vocoder_dir", "pretrained/bigvgan"]
args_list += ["--target_singer", target_singer]
args_list += ["--trans_key", str(key_shift)]
args_list += ["--diffusion_inference_steps", str(diffusion_steps)]
args_list += ["--source", source_audio_dir]
args_list += ["--output_dir", "result"]
args_list += ["--log_level", "debug"]
os.environ["WORK_DIR"] = "./"
inference.main(args_list)
### Display ###
result_file = os.path.join(
"result/{}/{}_{}.wav".format(audio_name, audio_name, target_singer)
)
return result_file
with gr.Blocks() as demo:
gr.Markdown(
"""
# Amphion Singing Voice Conversion: *DiffWaveNetSVC*
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2310.11160)
This demo provides an Amphion [DiffWaveNetSVC](https://github.com/open-mmlab/Amphion/tree/main/egs/svc/MultipleContentsSVC) pretrained model for you to play. The training data has been detailed [here](https://huggingface.co/amphion/singing_voice_conversion).
"""
)
gr.Markdown(
"""
## Source Audio
**Hint**: We recommend using dry vocals (e.g., studio recordings or source-separated voices from music) as the input for this demo. At the bottom of this page, we provide some examples for your reference.
"""
)
source_audio_input = gr.Audio(
sources=["upload", "microphone"],
label="Source Audio",
type="filepath",
)
with gr.Row():
with gr.Column():
config_target_singer = gr.Radio(
choices=list(SUPPORTED_TARGET_SINGERS.keys()),
label="Target Singer",
value="Jian Li 李健",
)
config_keyshift_choice = gr.Radio(
choices=["Auto Shift", "Key Shift"],
value="Auto Shift",
label="Pitch Shift Control",
info='If you want to control the specific pitch shift value, you need to choose "Key Shift"',
)
# gr.Markdown("## Conversion Configurations")
with gr.Column():
config_keyshift_value = gr.Slider(
-6,
6,
value=0,
step=1,
label="Key Shift Values",
info='How many semitones you want to transpose. This parameter will work only if you choose "Key Shift"',
)
config_diff_infer_steps = gr.Slider(
1,
1000,
value=1000,
step=1,
label="Diffusion Inference Steps",
info="As the step number increases, the synthesis quality will be better while the inference speed will be lower",
)
btn = gr.ClearButton(
components=[
config_target_singer,
config_keyshift_choice,
config_keyshift_value,
config_diff_infer_steps,
]
)
btn = gr.Button(value="Submit", variant="primary")
gr.Markdown("## Conversion Result")
demo_outputs = gr.Audio(label="Conversion Result")
btn.click(
fn=svc_inference,
inputs=[
source_audio_input,
config_target_singer,
config_keyshift_choice,
config_keyshift_value,
config_diff_infer_steps,
],
outputs=demo_outputs,
)
gr.Markdown("## Examples")
gr.Examples(
examples=[
[
"examples/chinese_female_recordings.wav",
"John Mayer",
"Auto Shift",
1000,
"examples/output/chinese_female_recordings_vocalist_l1_JohnMayer.wav",
],
[
"examples/chinese_male_seperated.wav",
"Taylor Swift",
"Auto Shift",
1000,
"examples/output/chinese_male_seperated_vocalist_l1_TaylorSwift.wav",
],
[
"examples/english_female_seperated.wav",
"Feng Wang 汪峰",
"Auto Shift",
1000,
"examples/output/english_female_seperated_vocalist_l1_汪峰.wav",
],
[
"examples/english_male_recordings.wav",
"Yijie Shi 石倚洁",
"Auto Shift",
1000,
"examples/output/english_male_recordings_vocalist_l1_石倚洁.wav",
],
],
inputs=[
source_audio_input,
config_target_singer,
config_keyshift_choice,
config_diff_infer_steps,
demo_outputs,
],
)
if __name__ == "__main__":
demo.launch()
|