File size: 8,924 Bytes
df2accb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch.autograd import Variable
import torch.nn.functional as F


@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
    n_channels_int = n_channels[0]
    in_act = input_a + input_b
    t_act = torch.tanh(in_act[:, :n_channels_int, :])
    s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
    acts = t_act * s_act
    return acts


class Invertible1x1Conv(torch.nn.Module):
    """
    The layer outputs both the convolution, and the log determinant
    of its weight matrix.  If reverse=True it does convolution with
    inverse
    """

    def __init__(self, c):
        super(Invertible1x1Conv, self).__init__()
        self.conv = torch.nn.Conv1d(
            c, c, kernel_size=1, stride=1, padding=0, bias=False
        )

        # Sample a random orthonormal matrix to initialize weights
        W = torch.linalg.qr(torch.FloatTensor(c, c).normal_())[0]

        # Ensure determinant is 1.0 not -1.0
        if torch.det(W) < 0:
            W[:, 0] = -1 * W[:, 0]
        W = W.view(c, c, 1)
        self.conv.weight.data = W

    def forward(self, z, reverse=False):
        # shape
        batch_size, group_size, n_of_groups = z.size()

        W = self.conv.weight.squeeze()

        if reverse:
            if not hasattr(self, "W_inverse"):
                # Reverse computation
                W_inverse = W.float().inverse()
                W_inverse = Variable(W_inverse[..., None])
                if z.type() == "torch.cuda.HalfTensor":
                    W_inverse = W_inverse.half()
                self.W_inverse = W_inverse
            z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
            return z
        else:
            # Forward computation
            log_det_W = batch_size * n_of_groups * torch.logdet(W)
            z = self.conv(z)
            return z, log_det_W


class WN(torch.nn.Module):
    """
    This is the WaveNet like layer for the affine coupling.  The primary difference
    from WaveNet is the convolutions need not be causal.  There is also no dilation
    size reset.  The dilation only doubles on each layer
    """

    def __init__(
        self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size
    ):
        super(WN, self).__init__()
        assert kernel_size % 2 == 1
        assert n_channels % 2 == 0
        self.n_layers = n_layers
        self.n_channels = n_channels
        self.in_layers = torch.nn.ModuleList()
        self.res_skip_layers = torch.nn.ModuleList()

        start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
        start = torch.nn.utils.weight_norm(start, name="weight")
        self.start = start

        # Initializing last layer to 0 makes the affine coupling layers
        # do nothing at first.  This helps with training stability
        end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
        end.weight.data.zero_()
        end.bias.data.zero_()
        self.end = end

        cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels * n_layers, 1)
        self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")

        for i in range(n_layers):
            dilation = 2**i
            padding = int((kernel_size * dilation - dilation) / 2)
            in_layer = torch.nn.Conv1d(
                n_channels,
                2 * n_channels,
                kernel_size,
                dilation=dilation,
                padding=padding,
            )
            in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
            self.in_layers.append(in_layer)

            # last one is not necessary
            if i < n_layers - 1:
                res_skip_channels = 2 * n_channels
            else:
                res_skip_channels = n_channels
            res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
            res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
            self.res_skip_layers.append(res_skip_layer)

    def forward(self, forward_input):
        audio, spect = forward_input
        audio = self.start(audio)
        output = torch.zeros_like(audio)
        n_channels_tensor = torch.IntTensor([self.n_channels])

        spect = self.cond_layer(spect)

        for i in range(self.n_layers):
            spect_offset = i * 2 * self.n_channels
            acts = fused_add_tanh_sigmoid_multiply(
                self.in_layers[i](audio),
                spect[:, spect_offset : spect_offset + 2 * self.n_channels, :],
                n_channels_tensor,
            )

            res_skip_acts = self.res_skip_layers[i](acts)
            if i < self.n_layers - 1:
                audio = audio + res_skip_acts[:, : self.n_channels, :]
                output = output + res_skip_acts[:, self.n_channels :, :]
            else:
                output = output + res_skip_acts

        return self.end(output)


class WaveGlow(torch.nn.Module):
    def __init__(self, cfg):
        super(WaveGlow, self).__init__()

        self.cfg = cfg

        self.upsample = torch.nn.ConvTranspose1d(
            self.cfg.VOCODER.INPUT_DIM,
            self.cfg.VOCODER.INPUT_DIM,
            1024,
            stride=256,
        )
        assert self.cfg.VOCODER.N_GROUP % 2 == 0
        self.n_flows = self.cfg.VOCODER.N_FLOWS
        self.n_group = self.cfg.VOCODER.N_GROUP
        self.n_early_every = self.cfg.VOCODER.N_EARLY_EVERY
        self.n_early_size = self.cfg.VOCODER.N_EARLY_SIZE
        self.WN = torch.nn.ModuleList()
        self.convinv = torch.nn.ModuleList()

        n_half = int(self.cfg.VOCODER.N_GROUP / 2)

        # Set up layers with the right sizes based on how many dimensions
        # have been output already
        n_remaining_channels = self.cfg.VOCODER.N_GROUP
        for k in range(self.cfg.VOCODER.N_FLOWS):
            if k % self.n_early_every == 0 and k > 0:
                n_half = n_half - int(self.n_early_size / 2)
                n_remaining_channels = n_remaining_channels - self.n_early_size
            self.convinv.append(Invertible1x1Conv(n_remaining_channels))
            self.WN.append(
                WN(
                    n_half,
                    self.cfg.VOCODER.INPUT_DIM * self.cfg.VOCODER.N_GROUP,
                    self.cfg.VOCODER.N_LAYERS,
                    self.cfg.VOCODER.N_CHANNELS,
                    self.cfg.VOCODER.KERNEL_SIZE,
                )
            )
        self.n_remaining_channels = n_remaining_channels  # Useful during inference

    def forward(self, forward_input):
        """
        forward_input[0] = mel_spectrogram:  batch x n_mel_channels x frames
        forward_input[1] = audio: batch x time
        """
        spect, audio = forward_input

        #  Upsample spectrogram to size of audio
        spect = self.upsample(spect)
        assert spect.size(2) >= audio.size(1)
        if spect.size(2) > audio.size(1):
            spect = spect[:, :, : audio.size(1)]

        spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
        spect = (
            spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
        )

        audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
        output_audio = []
        log_s_list = []
        log_det_W_list = []

        for k in range(self.n_flows):
            if k % self.n_early_every == 0 and k > 0:
                output_audio.append(audio[:, : self.n_early_size, :])
                audio = audio[:, self.n_early_size :, :]

            audio, log_det_W = self.convinv[k](audio)
            log_det_W_list.append(log_det_W)

            n_half = int(audio.size(1) / 2)
            audio_0 = audio[:, :n_half, :]
            audio_1 = audio[:, n_half:, :]

            output = self.WN[k]((audio_0, spect))
            log_s = output[:, n_half:, :]
            b = output[:, :n_half, :]
            audio_1 = torch.exp(log_s) * audio_1 + b
            log_s_list.append(log_s)

            audio = torch.cat([audio_0, audio_1], 1)

        output_audio.append(audio)
        return torch.cat(output_audio, 1), log_s_list, log_det_W_list

    @staticmethod
    def remove_weightnorm(model):
        waveglow = model
        for WN in waveglow.WN:
            WN.start = torch.nn.utils.remove_weight_norm(WN.start)
            WN.in_layers = remove(WN.in_layers)
            WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
            WN.res_skip_layers = remove(WN.res_skip_layers)
        return waveglow


def remove(conv_list):
    new_conv_list = torch.nn.ModuleList()
    for old_conv in conv_list:
        old_conv = torch.nn.utils.remove_weight_norm(old_conv)
        new_conv_list.append(old_conv)
    return new_conv_list