Spaces:
Sleeping
Sleeping
File size: 26,973 Bytes
0883aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import numpy as np
import sys, os, re, gzip, struct
#################################################
# Adding kaldi tools to shell path,
# Select kaldi,
if not "KALDI_ROOT" in os.environ:
# Default! To change run python with 'export KALDI_ROOT=/some_dir python'
os.environ["KALDI_ROOT"] = "/mnt/matylda5/iveselyk/Tools/kaldi-trunk"
# Add kaldi tools to path,
os.environ["PATH"] = (
os.popen(
"echo $KALDI_ROOT/src/bin:$KALDI_ROOT/tools/openfst/bin:$KALDI_ROOT/src/fstbin/:$KALDI_ROOT/src/gmmbin/:$KALDI_ROOT/src/featbin/:$KALDI_ROOT/src/lm/:$KALDI_ROOT/src/sgmmbin/:$KALDI_ROOT/src/sgmm2bin/:$KALDI_ROOT/src/fgmmbin/:$KALDI_ROOT/src/latbin/:$KALDI_ROOT/src/nnetbin:$KALDI_ROOT/src/nnet2bin:$KALDI_ROOT/src/nnet3bin:$KALDI_ROOT/src/online2bin/:$KALDI_ROOT/src/ivectorbin/:$KALDI_ROOT/src/lmbin/"
)
.readline()
.strip()
+ ":"
+ os.environ["PATH"]
)
#################################################
# Define all custom exceptions,
class UnsupportedDataType(Exception):
pass
class UnknownVectorHeader(Exception):
pass
class UnknownMatrixHeader(Exception):
pass
class BadSampleSize(Exception):
pass
class BadInputFormat(Exception):
pass
class SubprocessFailed(Exception):
pass
#################################################
# Data-type independent helper functions,
def open_or_fd(file, mode="rb"):
"""fd = open_or_fd(file)
Open file, gzipped file, pipe, or forward the file-descriptor.
Eventually seeks in the 'file' argument contains ':offset' suffix.
"""
offset = None
try:
# strip 'ark:' prefix from r{x,w}filename (optional),
if re.search("^(ark|scp)(,scp|,b|,t|,n?f|,n?p|,b?o|,n?s|,n?cs)*:", file):
(prefix, file) = file.split(":", 1)
# separate offset from filename (optional),
if re.search(":[0-9]+$", file):
(file, offset) = file.rsplit(":", 1)
# input pipe?
if file[-1] == "|":
fd = popen(file[:-1], "rb") # custom,
# output pipe?
elif file[0] == "|":
fd = popen(file[1:], "wb") # custom,
# is it gzipped?
elif file.split(".")[-1] == "gz":
fd = gzip.open(file, mode)
# a normal file...
else:
fd = open(file, mode)
except TypeError:
# 'file' is opened file descriptor,
fd = file
# Eventually seek to offset,
if offset != None:
fd.seek(int(offset))
return fd
# based on '/usr/local/lib/python3.4/os.py'
def popen(cmd, mode="rb"):
if not isinstance(cmd, str):
raise TypeError("invalid cmd type (%s, expected string)" % type(cmd))
import subprocess, io, threading
# cleanup function for subprocesses,
def cleanup(proc, cmd):
ret = proc.wait()
if ret > 0:
raise SubprocessFailed("cmd %s returned %d !" % (cmd, ret))
return
# text-mode,
if mode == "r":
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
threading.Thread(target=cleanup, args=(proc, cmd)).start() # clean-up thread,
return io.TextIOWrapper(proc.stdout)
elif mode == "w":
proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE)
threading.Thread(target=cleanup, args=(proc, cmd)).start() # clean-up thread,
return io.TextIOWrapper(proc.stdin)
# binary,
elif mode == "rb":
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
threading.Thread(target=cleanup, args=(proc, cmd)).start() # clean-up thread,
return proc.stdout
elif mode == "wb":
proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE)
threading.Thread(target=cleanup, args=(proc, cmd)).start() # clean-up thread,
return proc.stdin
# sanity,
else:
raise ValueError("invalid mode %s" % mode)
def read_key(fd):
"""[key] = read_key(fd)
Read the utterance-key from the opened ark/stream descriptor 'fd'.
"""
key = ""
while 1:
char = fd.read(1).decode("latin1")
if char == "":
break
if char == " ":
break
key += char
key = key.strip()
if key == "":
return None # end of file,
assert re.match("^\S+$", key) != None # check format (no whitespace!)
return key
#################################################
# Integer vectors (alignments, ...),
def read_ali_ark(file_or_fd):
"""Alias to 'read_vec_int_ark()'"""
return read_vec_int_ark(file_or_fd)
def read_vec_int_ark(file_or_fd):
"""generator(key,vec) = read_vec_int_ark(file_or_fd)
Create generator of (key,vector<int>) tuples, which reads from the ark file/stream.
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
Read ark to a 'dictionary':
d = { u:d for u,d in kaldi_io.read_vec_int_ark(file) }
"""
fd = open_or_fd(file_or_fd)
try:
key = read_key(fd)
while key:
ali = read_vec_int(fd)
yield key, ali
key = read_key(fd)
finally:
if fd is not file_or_fd:
fd.close()
def read_vec_int_scp(file_or_fd):
"""generator(key,vec) = read_vec_int_scp(file_or_fd)
Returns generator of (key,vector<int>) tuples, read according to kaldi scp.
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
Iterate the scp:
for key,vec in kaldi_io.read_vec_int_scp(file):
...
Read scp to a 'dictionary':
d = { key:vec for key,mat in kaldi_io.read_vec_int_scp(file) }
"""
fd = open_or_fd(file_or_fd)
try:
for line in fd:
(key, rxfile) = line.decode().split(" ")
vec = read_vec_int(rxfile)
yield key, vec
finally:
if fd is not file_or_fd:
fd.close()
def read_vec_int(file_or_fd):
"""[int-vec] = read_vec_int(file_or_fd)
Read kaldi integer vector, ascii or binary input,
"""
fd = open_or_fd(file_or_fd)
binary = fd.read(2).decode()
if binary == "\0B": # binary flag
assert fd.read(1).decode() == "\4"
# int-size
vec_size = np.frombuffer(fd.read(4), dtype="int32", count=1)[0] # vector dim
# Elements from int32 vector are sored in tuples: (sizeof(int32), value),
vec = np.frombuffer(
fd.read(vec_size * 5),
dtype=[("size", "int8"), ("value", "int32")],
count=vec_size,
)
assert vec[0]["size"] == 4 # int32 size,
ans = vec[:]["value"] # values are in 2nd column,
else: # ascii,
arr = (binary + fd.readline().decode()).strip().split()
try:
arr.remove("[")
arr.remove("]") # optionally
except ValueError:
pass
ans = np.array(arr, dtype=int)
if fd is not file_or_fd:
fd.close() # cleanup
return ans
# Writing,
def write_vec_int(file_or_fd, v, key=""):
"""write_vec_int(f, v, key='')
Write a binary kaldi integer vector to filename or stream.
Arguments:
file_or_fd : filename or opened file descriptor for writing,
v : the vector to be stored,
key (optional) : used for writing ark-file, the utterance-id gets written before the vector.
Example of writing single vector:
kaldi_io.write_vec_int(filename, vec)
Example of writing arkfile:
with open(ark_file,'w') as f:
for key,vec in dict.iteritems():
kaldi_io.write_vec_flt(f, vec, key=key)
"""
fd = open_or_fd(file_or_fd, mode="wb")
if sys.version_info[0] == 3:
assert fd.mode == "wb"
try:
if key != "":
fd.write(
(key + " ").encode("latin1")
) # ark-files have keys (utterance-id),
fd.write("\0B".encode()) # we write binary!
# dim,
fd.write("\4".encode()) # int32 type,
fd.write(struct.pack(np.dtype("int32").char, v.shape[0]))
# data,
for i in range(len(v)):
fd.write("\4".encode()) # int32 type,
fd.write(struct.pack(np.dtype("int32").char, v[i])) # binary,
finally:
if fd is not file_or_fd:
fd.close()
#################################################
# Float vectors (confidences, ivectors, ...),
# Reading,
def read_vec_flt_scp(file_or_fd):
"""generator(key,mat) = read_vec_flt_scp(file_or_fd)
Returns generator of (key,vector) tuples, read according to kaldi scp.
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
Iterate the scp:
for key,vec in kaldi_io.read_vec_flt_scp(file):
...
Read scp to a 'dictionary':
d = { key:mat for key,mat in kaldi_io.read_mat_scp(file) }
"""
fd = open_or_fd(file_or_fd)
try:
for line in fd:
(key, rxfile) = line.decode().split(" ")
vec = read_vec_flt(rxfile)
yield key, vec
finally:
if fd is not file_or_fd:
fd.close()
def read_vec_flt_ark(file_or_fd):
"""generator(key,vec) = read_vec_flt_ark(file_or_fd)
Create generator of (key,vector<float>) tuples, reading from an ark file/stream.
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
Read ark to a 'dictionary':
d = { u:d for u,d in kaldi_io.read_vec_flt_ark(file) }
"""
fd = open_or_fd(file_or_fd)
try:
key = read_key(fd)
while key:
ali = read_vec_flt(fd)
yield key, ali
key = read_key(fd)
finally:
if fd is not file_or_fd:
fd.close()
def read_vec_flt(file_or_fd):
"""[flt-vec] = read_vec_flt(file_or_fd)
Read kaldi float vector, ascii or binary input,
"""
fd = open_or_fd(file_or_fd)
binary = fd.read(2).decode()
if binary == "\0B": # binary flag
# Data type,
header = fd.read(3).decode()
if header == "FV ":
sample_size = 4 # floats
elif header == "DV ":
sample_size = 8 # doubles
else:
raise UnknownVectorHeader("The header contained '%s'" % header)
assert sample_size > 0
# Dimension,
assert fd.read(1).decode() == "\4"
# int-size
vec_size = np.frombuffer(fd.read(4), dtype="int32", count=1)[0] # vector dim
# Read whole vector,
buf = fd.read(vec_size * sample_size)
if sample_size == 4:
ans = np.frombuffer(buf, dtype="float32")
elif sample_size == 8:
ans = np.frombuffer(buf, dtype="float64")
else:
raise BadSampleSize
return ans
else: # ascii,
arr = (binary + fd.readline().decode()).strip().split()
try:
arr.remove("[")
arr.remove("]") # optionally
except ValueError:
pass
ans = np.array(arr, dtype=float)
if fd is not file_or_fd:
fd.close() # cleanup
return ans
# Writing,
def write_vec_flt(file_or_fd, v, key=""):
"""write_vec_flt(f, v, key='')
Write a binary kaldi vector to filename or stream. Supports 32bit and 64bit floats.
Arguments:
file_or_fd : filename or opened file descriptor for writing,
v : the vector to be stored,
key (optional) : used for writing ark-file, the utterance-id gets written before the vector.
Example of writing single vector:
kaldi_io.write_vec_flt(filename, vec)
Example of writing arkfile:
with open(ark_file,'w') as f:
for key,vec in dict.iteritems():
kaldi_io.write_vec_flt(f, vec, key=key)
"""
fd = open_or_fd(file_or_fd, mode="wb")
if sys.version_info[0] == 3:
assert fd.mode == "wb"
try:
if key != "":
fd.write(
(key + " ").encode("latin1")
) # ark-files have keys (utterance-id),
fd.write("\0B".encode()) # we write binary!
# Data-type,
if v.dtype == "float32":
fd.write("FV ".encode())
elif v.dtype == "float64":
fd.write("DV ".encode())
else:
raise UnsupportedDataType(
"'%s', please use 'float32' or 'float64'" % v.dtype
)
# Dim,
fd.write("\04".encode())
fd.write(struct.pack(np.dtype("uint32").char, v.shape[0])) # dim
# Data,
fd.write(v.tobytes())
finally:
if fd is not file_or_fd:
fd.close()
#################################################
# Float matrices (features, transformations, ...),
# Reading,
def read_mat_scp(file_or_fd):
"""generator(key,mat) = read_mat_scp(file_or_fd)
Returns generator of (key,matrix) tuples, read according to kaldi scp.
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
Iterate the scp:
for key,mat in kaldi_io.read_mat_scp(file):
...
Read scp to a 'dictionary':
d = { key:mat for key,mat in kaldi_io.read_mat_scp(file) }
"""
fd = open_or_fd(file_or_fd)
try:
for line in fd:
(key, rxfile) = line.decode().split(" ")
mat = read_mat(rxfile)
yield key, mat
finally:
if fd is not file_or_fd:
fd.close()
def read_mat_ark(file_or_fd):
"""generator(key,mat) = read_mat_ark(file_or_fd)
Returns generator of (key,matrix) tuples, read from ark file/stream.
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
Iterate the ark:
for key,mat in kaldi_io.read_mat_ark(file):
...
Read ark to a 'dictionary':
d = { key:mat for key,mat in kaldi_io.read_mat_ark(file) }
"""
fd = open_or_fd(file_or_fd)
try:
key = read_key(fd)
while key:
mat = read_mat(fd)
yield key, mat
key = read_key(fd)
finally:
if fd is not file_or_fd:
fd.close()
def read_mat(file_or_fd):
"""[mat] = read_mat(file_or_fd)
Reads single kaldi matrix, supports ascii and binary.
file_or_fd : file, gzipped file, pipe or opened file descriptor.
"""
fd = open_or_fd(file_or_fd)
try:
binary = fd.read(2).decode()
if binary == "\0B":
mat = _read_mat_binary(fd)
else:
assert binary == " ["
mat = _read_mat_ascii(fd)
finally:
if fd is not file_or_fd:
fd.close()
return mat
def _read_mat_binary(fd):
# Data type
header = fd.read(3).decode()
# 'CM', 'CM2', 'CM3' are possible values,
if header.startswith("CM"):
return _read_compressed_mat(fd, header)
elif header == "FM ":
sample_size = 4 # floats
elif header == "DM ":
sample_size = 8 # doubles
else:
raise UnknownMatrixHeader("The header contained '%s'" % header)
assert sample_size > 0
# Dimensions
s1, rows, s2, cols = np.frombuffer(
fd.read(10), dtype="int8,int32,int8,int32", count=1
)[0]
# Read whole matrix
buf = fd.read(rows * cols * sample_size)
if sample_size == 4:
vec = np.frombuffer(buf, dtype="float32")
elif sample_size == 8:
vec = np.frombuffer(buf, dtype="float64")
else:
raise BadSampleSize
mat = np.reshape(vec, (rows, cols))
return mat
def _read_mat_ascii(fd):
rows = []
while 1:
line = fd.readline().decode()
if len(line) == 0:
raise BadInputFormat # eof, should not happen!
if len(line.strip()) == 0:
continue # skip empty line
arr = line.strip().split()
if arr[-1] != "]":
rows.append(np.array(arr, dtype="float32")) # not last line
else:
rows.append(np.array(arr[:-1], dtype="float32")) # last line
mat = np.vstack(rows)
return mat
def _read_compressed_mat(fd, format):
"""Read a compressed matrix,
see: https://github.com/kaldi-asr/kaldi/blob/master/src/matrix/compressed-matrix.h
methods: CompressedMatrix::Read(...), CompressedMatrix::CopyToMat(...),
"""
assert format == "CM " # The formats CM2, CM3 are not supported...
# Format of header 'struct',
global_header = np.dtype(
[
("minvalue", "float32"),
("range", "float32"),
("num_rows", "int32"),
("num_cols", "int32"),
]
) # member '.format' is not written,
per_col_header = np.dtype(
[
("percentile_0", "uint16"),
("percentile_25", "uint16"),
("percentile_75", "uint16"),
("percentile_100", "uint16"),
]
)
# Mapping for percentiles in col-headers,
def uint16_to_float(value, min, range):
return np.float32(min + range * 1.52590218966964e-05 * value)
# Mapping for matrix elements,
def uint8_to_float_v2(vec, p0, p25, p75, p100):
# Split the vector by masks,
mask_0_64 = vec <= 64
mask_193_255 = vec > 192
mask_65_192 = ~(mask_0_64 | mask_193_255)
# Sanity check (useful but slow...),
# assert(len(vec) == np.sum(np.hstack([mask_0_64,mask_65_192,mask_193_255])))
# assert(len(vec) == np.sum(np.any([mask_0_64,mask_65_192,mask_193_255], axis=0)))
# Build the float vector,
ans = np.empty(len(vec), dtype="float32")
ans[mask_0_64] = p0 + (p25 - p0) / 64.0 * vec[mask_0_64]
ans[mask_65_192] = p25 + (p75 - p25) / 128.0 * (vec[mask_65_192] - 64)
ans[mask_193_255] = p75 + (p100 - p75) / 63.0 * (vec[mask_193_255] - 192)
return ans
# Read global header,
globmin, globrange, rows, cols = np.frombuffer(
fd.read(16), dtype=global_header, count=1
)[0]
# The data is structed as [Colheader, ... , Colheader, Data, Data , .... ]
# { cols }{ size }
col_headers = np.frombuffer(fd.read(cols * 8), dtype=per_col_header, count=cols)
data = np.reshape(
np.frombuffer(fd.read(cols * rows), dtype="uint8", count=cols * rows),
newshape=(cols, rows),
) # stored as col-major,
mat = np.empty((cols, rows), dtype="float32")
for i, col_header in enumerate(col_headers):
col_header_flt = [
uint16_to_float(percentile, globmin, globrange) for percentile in col_header
]
mat[i] = uint8_to_float_v2(data[i], *col_header_flt)
return mat.T # transpose! col-major -> row-major,
def write_ark_scp(key, mat, ark_fout, scp_out):
mat_offset = write_mat(ark_fout, mat, key)
scp_line = "{}\t{}:{}".format(key, ark_fout.name, mat_offset)
scp_out.write(scp_line)
scp_out.write("\n")
# Writing,
def write_mat(file_or_fd, m, key=""):
"""write_mat(f, m, key='')
Write a binary kaldi matrix to filename or stream. Supports 32bit and 64bit floats.
Arguments:
file_or_fd : filename of opened file descriptor for writing,
m : the matrix to be stored,
key (optional) : used for writing ark-file, the utterance-id gets written before the matrix.
Example of writing single matrix:
kaldi_io.write_mat(filename, mat)
Example of writing arkfile:
with open(ark_file,'w') as f:
for key,mat in dict.iteritems():
kaldi_io.write_mat(f, mat, key=key)
"""
mat_offset = 0
fd = open_or_fd(file_or_fd, mode="wb")
if sys.version_info[0] == 3:
assert fd.mode == "wb"
try:
if key != "":
fd.write(
(key + " ").encode("latin1")
) # ark-files have keys (utterance-id),
mat_offset = fd.tell()
fd.write("\0B".encode()) # we write binary!
# Data-type,
if m.dtype == "float32":
fd.write("FM ".encode())
elif m.dtype == "float64":
fd.write("DM ".encode())
else:
raise UnsupportedDataType(
"'%s', please use 'float32' or 'float64'" % m.dtype
)
# Dims,
fd.write("\04".encode())
fd.write(struct.pack(np.dtype("uint32").char, m.shape[0])) # rows
fd.write("\04".encode())
fd.write(struct.pack(np.dtype("uint32").char, m.shape[1])) # cols
# Data,
fd.write(m.tobytes())
finally:
if fd is not file_or_fd:
fd.close()
return mat_offset
#################################################
# 'Posterior' kaldi type (posteriors, confusion network, nnet1 training targets, ...)
# Corresponds to: vector<vector<tuple<int,float> > >
# - outer vector: time axis
# - inner vector: records at the time
# - tuple: int = index, float = value
#
def read_cnet_ark(file_or_fd):
"""Alias of function 'read_post_ark()', 'cnet' = confusion network"""
return read_post_ark(file_or_fd)
def read_post_ark(file_or_fd):
"""generator(key,vec<vec<int,float>>) = read_post_ark(file)
Returns generator of (key,posterior) tuples, read from ark file.
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
Iterate the ark:
for key,post in kaldi_io.read_post_ark(file):
...
Read ark to a 'dictionary':
d = { key:post for key,post in kaldi_io.read_post_ark(file) }
"""
fd = open_or_fd(file_or_fd)
try:
key = read_key(fd)
while key:
post = read_post(fd)
yield key, post
key = read_key(fd)
finally:
if fd is not file_or_fd:
fd.close()
def read_post(file_or_fd):
"""[post] = read_post(file_or_fd)
Reads single kaldi 'Posterior' in binary format.
The 'Posterior' is C++ type 'vector<vector<tuple<int,float> > >',
the outer-vector is usually time axis, inner-vector are the records
at given time, and the tuple is composed of an 'index' (integer)
and a 'float-value'. The 'float-value' can represent a probability
or any other numeric value.
Returns vector of vectors of tuples.
"""
fd = open_or_fd(file_or_fd)
ans = []
binary = fd.read(2).decode()
assert binary == "\0B"
# binary flag
assert fd.read(1).decode() == "\4"
# int-size
outer_vec_size = np.frombuffer(fd.read(4), dtype="int32", count=1)[
0
] # number of frames (or bins)
# Loop over 'outer-vector',
for i in range(outer_vec_size):
assert fd.read(1).decode() == "\4"
# int-size
inner_vec_size = np.frombuffer(fd.read(4), dtype="int32", count=1)[
0
] # number of records for frame (or bin)
data = np.frombuffer(
fd.read(inner_vec_size * 10),
dtype=[
("size_idx", "int8"),
("idx", "int32"),
("size_post", "int8"),
("post", "float32"),
],
count=inner_vec_size,
)
assert data[0]["size_idx"] == 4
assert data[0]["size_post"] == 4
ans.append(data[["idx", "post"]].tolist())
if fd is not file_or_fd:
fd.close()
return ans
#################################################
# Kaldi Confusion Network bin begin/end times,
# (kaldi stores CNs time info separately from the Posterior).
#
def read_cntime_ark(file_or_fd):
"""generator(key,vec<tuple<float,float>>) = read_cntime_ark(file_or_fd)
Returns generator of (key,cntime) tuples, read from ark file.
file_or_fd : file, gzipped file, pipe or opened file descriptor.
Iterate the ark:
for key,time in kaldi_io.read_cntime_ark(file):
...
Read ark to a 'dictionary':
d = { key:time for key,time in kaldi_io.read_post_ark(file) }
"""
fd = open_or_fd(file_or_fd)
try:
key = read_key(fd)
while key:
cntime = read_cntime(fd)
yield key, cntime
key = read_key(fd)
finally:
if fd is not file_or_fd:
fd.close()
def read_cntime(file_or_fd):
"""[cntime] = read_cntime(file_or_fd)
Reads single kaldi 'Confusion Network time info', in binary format:
C++ type: vector<tuple<float,float> >.
(begin/end times of bins at the confusion network).
Binary layout is '<num-bins> <beg1> <end1> <beg2> <end2> ...'
file_or_fd : file, gzipped file, pipe or opened file descriptor.
Returns vector of tuples.
"""
fd = open_or_fd(file_or_fd)
binary = fd.read(2).decode()
assert binary == "\0B"
# assuming it's binary
assert fd.read(1).decode() == "\4"
# int-size
vec_size = np.frombuffer(fd.read(4), dtype="int32", count=1)[
0
] # number of frames (or bins)
data = np.frombuffer(
fd.read(vec_size * 10),
dtype=[
("size_beg", "int8"),
("t_beg", "float32"),
("size_end", "int8"),
("t_end", "float32"),
],
count=vec_size,
)
assert data[0]["size_beg"] == 4
assert data[0]["size_end"] == 4
ans = data[["t_beg", "t_end"]].tolist() # Return vector of tuples (t_beg,t_end),
if fd is not file_or_fd:
fd.close()
return ans
#################################################
# Segments related,
#
# Segments as 'Bool vectors' can be handy,
# - for 'superposing' the segmentations,
# - for frame-selection in Speaker-ID experiments,
def read_segments_as_bool_vec(segments_file):
"""[ bool_vec ] = read_segments_as_bool_vec(segments_file)
using kaldi 'segments' file for 1 wav, format : '<utt> <rec> <t-beg> <t-end>'
- t-beg, t-end is in seconds,
- assumed 100 frames/second,
"""
segs = np.loadtxt(segments_file, dtype="object,object,f,f", ndmin=1)
# Sanity checks,
assert len(segs) > 0 # empty segmentation is an error,
assert (
len(np.unique([rec[1] for rec in segs])) == 1
) # segments with only 1 wav-file,
# Convert time to frame-indexes,
start = np.rint([100 * rec[2] for rec in segs]).astype(int)
end = np.rint([100 * rec[3] for rec in segs]).astype(int)
# Taken from 'read_lab_to_bool_vec', htk.py,
frms = np.repeat(
np.r_[np.tile([False, True], len(end)), False],
np.r_[np.c_[start - np.r_[0, end[:-1]], end - start].flat, 0],
)
assert np.sum(end - start) == np.sum(frms)
return frms
|