File size: 32,214 Bytes
0883aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
# This module is modified from https://github.com/Plachtaa/VALL-E-X/blob/3faaf8ccadb154d63b38070caf518ce9309ea0f4/modules/optim.py#L836

import logging
import contextlib
import torch
from torch import Tensor
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim import Optimizer
from typing import List, Tuple
from collections import defaultdict


class NoamLR(_LRScheduler):
    """
    Implements the Noam Learning rate schedule. This corresponds to increasing the learning rate
    linearly for the first ``num_warmup`` training steps, and decreasing it thereafter proportionally
    to the inverse square root of the step number, scaled by the inverse square root of the
    dimensionality of the model. Time will tell if this is just madness or it's actually important.
    Parameters
    ----------
    num_warmup: ``int``, required.
        The number of steps to linearly increase the learning rate.
    """

    def __init__(self, optimizer, num_warmup):
        self.num_warmup = num_warmup
        self.base_lr = optimizer.param_groups[0]["lr"]
        super().__init__(optimizer)

    def get_lr(self):
        last_epoch = max(1, self.last_epoch)
        scale = min(last_epoch ** (-0.5), last_epoch * self.num_warmup ** (-1.5))
        return [scale * self.base_lr]

class Eve(Optimizer):
    """
    Implements Eve algorithm.  This is a modified version of AdamW with a special
    way of setting the weight-decay / shrinkage-factor, which is designed to make the
    rms of the parameters approach a particular target_rms (default: 0.1).  This is
    for use with networks with 'scaled' versions of modules (see scaling.py), which
    will be close to invariant to the absolute scale on the parameter matrix.

    The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
    The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
    Eve is unpublished so far.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay coefficient (default: 3e-4;
            this value means that the weight would decay significantly after
            about 3k minibatches.  Is not multiplied by learning rate, but
            is conditional on RMS-value of parameter being > target_rms.
        target_rms (float, optional): target root-mean-square value of
           parameters, if they fall below this we will stop applying weight decay.


    .. _Adam: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ
    """

    def __init__(
        self,
        params,
        lr=1e-3,
        betas=(0.9, 0.98),
        eps=1e-8,
        weight_decay=1e-3,
        target_rms=0.1,
    ):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        if not 0 <= weight_decay <= 0.1:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        if not 0 < target_rms <= 10.0:
            raise ValueError("Invalid target_rms value: {}".format(target_rms))
        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            target_rms=target_rms,
        )
        super(Eve, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(Eve, self).__setstate__(state)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue

                # Perform optimization step
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError("AdamW does not support sparse gradients")

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state["step"] = 0
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(
                        p, memory_format=torch.preserve_format
                    )
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.zeros_like(
                        p, memory_format=torch.preserve_format
                    )

                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]

                beta1, beta2 = group["betas"]

                state["step"] += 1
                bias_correction1 = 1 - beta1 ** state["step"]
                bias_correction2 = 1 - beta2 ** state["step"]

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
                denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_(
                    group["eps"]
                )

                step_size = group["lr"] / bias_correction1
                target_rms = group["target_rms"]
                weight_decay = group["weight_decay"]

                if p.numel() > 1:
                    # avoid applying this weight-decay on "scaling factors"
                    # (which are scalar).
                    is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5))
                    p.mul_(1 - (weight_decay * is_above_target_rms))

                p.addcdiv_(exp_avg, denom, value=-step_size)

                # if random.random() < 0.0005:
                #     step = (exp_avg / denom) * step_size
                #     logging.info(
                #         f"Delta rms = {(step**2).mean().item()}, shape = {step.shape}"
                #     )

        return loss

class BatchedOptimizer(Optimizer):
    """
    This class adds to class Optimizer the capability to optimize parameters in batches:
    it will stack the parameters and their grads for you so the optimizer can work
    on tensors with an extra leading dimension.  This is intended for speed with GPUs,
    as it reduces the number of kernels launched in the optimizer.

    Args:
      params:
    """

    def __init__(self, params, defaults):
        super(BatchedOptimizer, self).__init__(params, defaults)

    @contextlib.contextmanager
    def batched_params(self, param_group, group_params_names):
        """
        This function returns (technically, yields) a list of
          of tuples (p, state), where
        p is a `fake` parameter that is stacked (over axis 0) from real parameters
        that share the same shape, and its gradient is also stacked;
        `state` is the state corresponding to this batch of parameters
        (it will be physically located in the "state" for one of the real
        parameters, the last one that has any particular shape and dtype).

        This function is decorated as a context manager so that it can
        write parameters back to their "real" locations.

        The idea is, instead of doing:
        <code>
          for p in group["params"]:
             state = self.state[p]
             ...
        </code>
        you can do:
        <code>
          with self.batched_params(group["params"]) as batches:
             for p, state, p_names in batches:
                 ...
        </code>

        Args:
          group: a parameter group, which is a list of parameters; should be
                one of self.param_groups.
          group_params_names: name for each parameter in group,
                which is List[str].
        """
        batches = defaultdict(
            list
        )  # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
        batches_names = defaultdict(
            list
        )  # `batches` maps from tuple (dtype_as_str,*shape) to list of str

        assert len(param_group) == len(group_params_names)
        for p, named_p in zip(param_group, group_params_names):
            key = (str(p.dtype), *p.shape)
            batches[key].append(p)
            batches_names[key].append(named_p)

        batches_names_keys = list(batches_names.keys())
        sorted_idx = sorted(
            range(len(batches_names)), key=lambda i: batches_names_keys[i]
        )
        batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx]
        batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]

        stacked_params_dict = dict()

        # turn batches into a list, in deterministic order.
        # tuples will contain tuples of (stacked_param, state, stacked_params_names),
        # one for each batch in `batches`.
        tuples = []

        for batch, batch_names in zip(batches, batches_names):
            p = batch[0]
            # we arbitrarily store the state in the
            # state corresponding to the 1st parameter in the
            # group.  class Optimizer will take care of saving/loading state.
            state = self.state[p]
            p_stacked = torch.stack(batch)
            grad = torch.stack(
                [torch.zeros_like(p) if p.grad is None else p.grad for p in batch]
            )
            p_stacked.grad = grad
            stacked_params_dict[key] = p_stacked
            tuples.append((p_stacked, state, batch_names))

        yield tuples  

        for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
            for i, p in enumerate(batch):  
                p.copy_(stacked_params[i])

class ScaledAdam(BatchedOptimizer):
    """
     Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
     proportional to the norm of that parameter; and also learn the scale of the parameter,
     in log space, subject to upper and lower limits (as if we had factored each parameter as
     param = underlying_param * log_scale.exp())


     Args:
          params:  The parameters or param_groups to optimize (like other Optimizer subclasses)
              lr:  The learning rate.  We will typically use a learning rate schedule that starts
                   at 0.03 and decreases over time, i.e. much higher than other common
                   optimizers.
     clipping_scale: (e.g. 2.0)
                   A scale for gradient-clipping: if specified, the normalized gradients
                   over the whole model will be clipped to have 2-norm equal to
                   `clipping_scale` times the median 2-norm over the most recent period
                   of `clipping_update_period` minibatches.  By "normalized gradients",
                   we mean after multiplying by the rms parameter value for this tensor
                   [for non-scalars]; this is appropriate because our update is scaled
                   by this quantity.
            betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
                   Must satisfy 0 < beta <= beta2 < 1.
     scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
                   scale of each parameter tensor and scalar parameters of the mode..
                   If each parameter were decomposed
                   as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
                   would be a the scaling factor on the learning rate of p_scale.
              eps:  A general-purpose epsilon to prevent division by zero
    param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
                   learning the scale on the parameters (we'll constrain the rms of each non-scalar
                   parameter tensor to be >= this value)
    param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
                   learning the scale on the parameters (we'll constrain the rms of each non-scalar
                   parameter tensor to be <= this value)
       scalar_max: Maximum absolute value for scalar parameters (applicable if your
                   model has any parameters with numel() == 1).
    size_update_period: The periodicity, in steps, with which we update the size (scale)
                   of the parameter tensor.  This is provided to save a little time
                   in the update.
     clipping_update_period: if clipping_scale is specified, this is the period
    """

    def __init__(
        self,
        params,
        lr=3e-02,
        clipping_scale=None,
        betas=(0.9, 0.98),
        scalar_lr_scale=0.1,
        eps=1.0e-08,
        param_min_rms=1.0e-05,
        param_max_rms=3.0,
        scalar_max=10.0,
        size_update_period=4,
        clipping_update_period=100,
        parameters_names=None,
        show_dominant_parameters=True,
    ):

        assert parameters_names is not None, (
            "Please prepare parameters_names,"
            "which is a List[List[str]]. Each List[str] is for a group"
            "and each str is for a parameter"
        )
        defaults = dict(
            lr=lr,
            clipping_scale=clipping_scale,
            betas=betas,
            scalar_lr_scale=scalar_lr_scale,
            eps=eps,
            param_min_rms=param_min_rms,
            param_max_rms=param_max_rms,
            scalar_max=scalar_max,
            size_update_period=size_update_period,
            clipping_update_period=clipping_update_period,
        )

        super(ScaledAdam, self).__init__(params, defaults)
        assert len(self.param_groups) == len(parameters_names)
        self.parameters_names = parameters_names
        self.show_dominant_parameters = show_dominant_parameters

    def __setstate__(self, state):
        super(ScaledAdam, self).__setstate__(state)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        batch = True

        for group, group_params_names in zip(self.param_groups, self.parameters_names):

            with self.batched_params(group["params"], group_params_names) as batches:

                # batches is list of pairs (stacked_param, state).  stacked_param is like
                # a regular parameter, and will have a .grad, but the 1st dim corresponds to
                # a stacking dim, it is not a real dim.

                if (
                    len(batches[0][1]) == 0
                ):
                    clipping_scale = 1
                else:
                    clipping_scale = self._get_clipping_scale(group, batches)

                for p, state, _ in batches:
                    # Perform optimization step.
                    # grad is not going to be None, we handled that when creating the batches.
                    grad = p.grad
                    if grad.is_sparse:
                        raise RuntimeError(
                            "ScaledAdam optimizer does not support sparse gradients"
                        )
                    # State initialization
                    if len(state) == 0:
                        self._init_state(group, p, state)

                    self._step_one_batch(group, p, state, clipping_scale)

        return loss

    def _init_state(self, group: dict, p: Tensor, state: dict):
        """
        Initializes state dict for parameter 'p'.  Assumes that dim 0 of tensor p
        is actually the batch dimension, corresponding to batched-together
        parameters of a given shape.


        Args:
           group:   Dict to look up configuration values.
               p: The parameter that we are initializing the state for
           state: Dict from string to whatever state we are initializing
        """
        size_update_period = group["size_update_period"]

        state["step"] = 0

        kwargs = {"device": p.device, "dtype": p.dtype}

        # 'delta' implements conventional momentum.  There are
        # several different kinds of update going on, so rather than
        # compute "exp_avg" like in Adam, we store and decay a
        # parameter-change "delta", which combines all forms of
        # update.  this is equivalent to how it's done in Adam,
        # except for the first few steps.
        state["delta"] = torch.zeros_like(p, memory_format=torch.preserve_format)

        batch_size = p.shape[0]
        numel = p.numel() // batch_size
        numel = p.numel()

        if numel > 1:
            # "param_rms" just periodically records the scalar root-mean-square value of
            # the parameter tensor.
            # it has a shape like (batch_size, 1, 1, 1, 1)
            param_rms = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt()
            state["param_rms"] = param_rms

            state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
            state["scale_grads"] = torch.zeros(
                size_update_period, *param_rms.shape, **kwargs
            )

        # exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
        state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format)

    def _get_clipping_scale(
        self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]]
    ) -> float:
        """
        Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
        by this amount before applying the rest of the update.

        Args:
           group: the parameter group, an item in self.param_groups
           tuples: a list of tuples of (param, state, param_names)
                where param is a batched set of parameters,
                with a .grad (1st dim is batch dim)
                and state is the state-dict where optimization parameters are kept.
                param_names is a List[str] while each str is name for a parameter
                in batched set of parameters "param".
        """
        assert len(tuples) >= 1
        clipping_scale = group["clipping_scale"]
        (first_p, first_state, _) = tuples[0]
        step = first_state["step"]
        if clipping_scale is None or step == 0:
            # no clipping.  return early on step == 0 because the other
            # parameters' state won't have been initialized yet.
            return 1.0
        clipping_update_period = group["clipping_update_period"]

        tot_sumsq = torch.tensor(0.0, device=first_p.device)
        for (p, state, param_names) in tuples:
            grad = p.grad
            if grad.is_sparse:
                raise RuntimeError(
                    "ScaledAdam optimizer does not support sparse gradients"
                )
            if p.numel() == p.shape[0]:  # a batch of scalars
                tot_sumsq += (grad**2).sum()  # sum() to change shape [1] to []
            else:
                tot_sumsq += ((grad * state["param_rms"]) ** 2).sum()

        tot_norm = tot_sumsq.sqrt()
        if "model_norms" not in first_state:
            first_state["model_norms"] = torch.zeros(
                clipping_update_period, device=p.device
            )
        first_state["model_norms"][step % clipping_update_period] = tot_norm

        if step % clipping_update_period == 0:
            # Print some stats.
            # We don't reach here if step == 0 because we would have returned
            # above.
            sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
            quartiles = []
            for n in range(0, 5):
                index = min(
                    clipping_update_period - 1,
                    (clipping_update_period // 4) * n,
                )
                quartiles.append(sorted_norms[index].item())

            median = quartiles[2]
            threshold = clipping_scale * median
            first_state["model_norm_threshold"] = threshold
            percent_clipped = (
                first_state["num_clipped"] * 100.0 / clipping_update_period
                if "num_clipped" in first_state
                else 0.0
            )
            first_state["num_clipped"] = 0
            quartiles = " ".join(["%.3e" % x for x in quartiles])
            logging.info(
                f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
                f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
            )

        if step < clipping_update_period:
            return 1.0  # We have not yet estimated a norm to clip to.
        else:
            try:
                model_norm_threshold = first_state["model_norm_threshold"]
            except KeyError:
                logging.info(
                    "Warning: model_norm_threshold not in state: possibly "
                    "you changed config when restarting, adding clipping_scale option?"
                )
                return 1.0
            ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
            if ans < 1.0:
                first_state["num_clipped"] += 1
            if ans < 0.1:
                logging.warn(
                    f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
                )
                if self.show_dominant_parameters:
                    assert p.shape[0] == len(param_names)
                    self._show_gradient_dominating_parameter(tuples, tot_sumsq)
            return ans

    def _show_gradient_dominating_parameter(
        self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor
    ):
        """
        Show information of parameter wihch dominanting tot_sumsq.

        Args:
           tuples: a list of tuples of (param, state, param_names)
                where param is a batched set of parameters,
                with a .grad (1st dim is batch dim)
                and state is the state-dict where optimization parameters are kept.
                param_names is a List[str] while each str is name for a parameter
                in batched set of parameters "param".
            tot_sumsq: sumsq of all parameters. Though it's could be calculated
                from tuples, we still pass it to save some time.
        """
        all_sumsq_orig = {}
        for (p, state, batch_param_names) in tuples:
            # p is a stacked batch parameters.
            batch_grad = p.grad
            if p.numel() == p.shape[0]:  # a batch of scalars
                batch_sumsq_orig = batch_grad**2
                # Dummpy values used by following `zip` statement.
                batch_rms_orig = torch.ones(p.shape[0])
            else:
                batch_rms_orig = state["param_rms"]
                batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum(
                    dim=list(range(1, batch_grad.ndim))
                )

            for name, sumsq_orig, rms, grad in zip(
                batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad
            ):

                proportion_orig = sumsq_orig / tot_sumsq
                all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)

        assert torch.isclose(
            sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
            torch.tensor(1.0),
        )
        sorted_by_proportion = {
            k: v
            for k, v in sorted(
                all_sumsq_orig.items(),
                key=lambda item: item[1][0],
                reverse=True,
            )
        }
        dominant_param_name = next(iter(sorted_by_proportion))
        (
            dominant_proportion,
            dominant_sumsq,
            dominant_rms,
            dominant_grad,
        ) = sorted_by_proportion[dominant_param_name]
        logging.info(
            f"Parameter Dominanting tot_sumsq {dominant_param_name}"
            f" with proportion {dominant_proportion:.2f},"
            f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
            f"={dominant_sumsq:.3e},"
            f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
            f" orig_rms_sq={(dominant_rms**2).item():.3e}"
        )

    def _step_one_batch(
        self, group: dict, p: Tensor, state: dict, clipping_scale: float
    ):
        """
        Do the step for one parameter, which is actually going to be a batch of
        `real` parameters, with dim 0 as the batch dim.
        Args:
                  group:  dict to look up configuration values
                    p: parameter to update (actually multiple parameters stacked together
                       as a batch)
                  state: state-dict for p, to look up the optimizer state
        """
        lr = group["lr"]
        size_update_period = group["size_update_period"]
        beta1 = group["betas"][0]

        grad = p.grad
        if clipping_scale != 1.0:
            grad = grad * clipping_scale
        step = state["step"]
        delta = state["delta"]

        delta.mul_(beta1)
        batch_size = p.shape[0]
        numel = p.numel() // batch_size
        if numel > 1:
            # Update the size/scale of p, and set param_rms
            scale_grads = state["scale_grads"]
            scale_grads[step % size_update_period] = (p * grad).sum(
                dim=list(range(1, p.ndim)), keepdim=True
            )
            if step % size_update_period == size_update_period - 1:
                param_rms = state["param_rms"]  # shape: (batch_size, 1, 1, ..)
                param_rms.copy_(
                    (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt()
                )
                if step > 0:
                    # self._size_update() learns the overall scale on the
                    # parameter, by shrinking or expanding it.
                    self._size_update(group, scale_grads, p, state)

        if numel == 1:
            # For parameters with 1 element we just use regular Adam.
            # Updates delta.
            self._step_scalar(group, p, state)
        else:
            self._step(group, p, state)

        state["step"] = step + 1

    def _size_update(
        self, group: dict, scale_grads: Tensor, p: Tensor, state: dict
    ) -> None:
        """
               Called only where p.numel() > 1, this updates the scale of the parameter.
               If we imagine: p =  underlying_param * scale.exp(), and we are doing
               gradient descent on underlying param and on scale, this function does the update
               on `scale`.

               Args:
              group: dict to look up configuration values
        scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
                      grads w.r.t. the scales.
                  p:  The parameter to update
               state: The state-dict of p
        """

        param_rms = state["param_rms"]
        beta1, beta2 = group["betas"]
        size_lr = group["lr"] * group["scalar_lr_scale"]
        param_min_rms = group["param_min_rms"]
        param_max_rms = group["param_max_rms"]
        eps = group["eps"]
        step = state["step"]
        batch_size = p.shape[0]

        size_update_period = scale_grads.shape[0]
        # correct beta2 for the size update period: we will have
        # faster decay at this level.
        beta2_corr = beta2**size_update_period

        scale_exp_avg_sq = state["scale_exp_avg_sq"]  # shape: (batch_size, 1, 1, ..)
        scale_exp_avg_sq.mul_(beta2_corr).add_(
            (scale_grads**2).mean(dim=0),  # mean over dim `size_update_period`
            alpha=1 - beta2_corr,
        )  # shape is (batch_size, 1, 1, ...)

        # The 1st time we reach here is when size_step == 1.
        size_step = (step + 1) // size_update_period
        bias_correction2 = 1 - beta2_corr**size_step
        # we don't bother with bias_correction1; this will help prevent divergence
        # at the start of training.

        denom = scale_exp_avg_sq.sqrt() + eps

        scale_step = (
            -size_lr * (bias_correction2**0.5) * scale_grads.sum(dim=0) / denom
        )

        is_too_small = param_rms < param_min_rms
        is_too_large = param_rms > param_max_rms

        # when the param gets too small, just don't shrink it any further.
        scale_step.masked_fill_(is_too_small, 0.0)
        # when it gets too large, stop it from getting any larger.
        scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
        delta = state["delta"]
        # the factor of (1-beta1) relates to momentum.
        delta.add_(p * scale_step, alpha=(1 - beta1))

    def _step(self, group: dict, p: Tensor, state: dict):
        """
        This function does the core update of self.step(), in the case where the members of
        the batch have more than 1 element.

        Args:
            group: A dict which will be used to look up configuration values
                p: The parameter to be updated
             grad: The grad of p
            state: The state-dict corresponding to parameter p

        This function modifies p.
        """
        grad = p.grad
        lr = group["lr"]
        beta1, beta2 = group["betas"]
        eps = group["eps"]
        param_min_rms = group["param_min_rms"]
        step = state["step"]

        exp_avg_sq = state["exp_avg_sq"]
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))

        this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0)
        bias_correction2 = 1 - beta2 ** (this_step + 1)
        if bias_correction2 < 0.99:
            # note: not in-place.
            exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)

        denom = exp_avg_sq.sqrt()
        denom += eps
        grad = grad / denom

        alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)

        delta = state["delta"]
        delta.add_(grad * alpha)
        p.add_(delta)

    def _step_scalar(self, group: dict, p: Tensor, state: dict):
        """
        A simplified form of the core update for scalar tensors, where we cannot get a good
        estimate of the parameter rms.
        """
        beta1, beta2 = group["betas"]
        scalar_max = group["scalar_max"]
        eps = group["eps"]
        lr = group["lr"] * group["scalar_lr_scale"]
        grad = p.grad

        exp_avg_sq = state["exp_avg_sq"]  # shape: (batch_size,)
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

        # bias_correction2 is like in Adam.  Don't bother with bias_correction1;
        # slower update at the start will help stability anyway.
        bias_correction2 = 1 - beta2 ** (state["step"] + 1)
        denom = (exp_avg_sq / bias_correction2).sqrt() + eps

        delta = state["delta"]
        delta.add_(grad / denom, alpha=-lr * (1 - beta1))
        p.clamp_(min=-scalar_max, max=scalar_max)
        p.add_(delta)