Spaces:
Running
on
A10G
Running
on
A10G
File size: 2,990 Bytes
0883aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn as nn
from modules.general.utils import Linear
class PositionEncoder(nn.Module):
r"""Encoder of positional embedding, generates PE and then
feed into 2 full-connected layers with ``SiLU``.
Args:
d_raw_emb: The dimension of raw embedding vectors.
d_out: The dimension of output embedding vectors, default to ``d_raw_emb``.
d_mlp: The dimension of hidden layer in MLP, default to ``d_raw_emb`` * 4.
activation_function: The activation function used in MLP, default to ``SiLU``.
n_layer: The number of layers in MLP, default to 2.
max_period: controls the minimum frequency of the embeddings.
"""
def __init__(
self,
d_raw_emb: int = 128,
d_out: int = None,
d_mlp: int = None,
activation_function: str = "SiLU",
n_layer: int = 2,
max_period: int = 10000,
):
super().__init__()
self.d_raw_emb = d_raw_emb
self.d_out = d_raw_emb if d_out is None else d_out
self.d_mlp = d_raw_emb * 4 if d_mlp is None else d_mlp
self.n_layer = n_layer
self.max_period = max_period
if activation_function.lower() == "silu":
self.activation_function = "SiLU"
elif activation_function.lower() == "relu":
self.activation_function = "ReLU"
elif activation_function.lower() == "gelu":
self.activation_function = "GELU"
else:
raise ValueError("activation_function must be one of SiLU, ReLU, GELU")
self.activation_function = activation_function
tmp = [Linear(self.d_raw_emb, self.d_mlp), getattr(nn, activation_function)()]
for _ in range(self.n_layer - 1):
tmp.append(Linear(self.d_mlp, self.d_mlp))
tmp.append(getattr(nn, activation_function)())
tmp.append(Linear(self.d_mlp, self.d_out))
self.out = nn.Sequential(*tmp)
def forward(self, steps: torch.Tensor) -> torch.Tensor:
r"""Create and return sinusoidal timestep embeddings directly.
Args:
steps: a 1D Tensor of N indices, one per batch element.
These may be fractional.
Returns:
an [N x ``d_out``] Tensor of positional embeddings.
"""
half = self.d_raw_emb // 2
freqs = torch.exp(
-math.log(self.max_period)
/ half
* torch.arange(half, dtype=torch.float32, device=steps.device)
)
args = steps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if self.d_raw_emb % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
return self.out(embedding)
|