Spaces:
Sleeping
Sleeping
File size: 8,496 Bytes
df2accb 0883aa1 df2accb 0883aa1 df2accb 0883aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
import glob
from tqdm import tqdm
import json
import torch
import time
from models.svc.diffusion.diffusion_inference import DiffusionInference
from models.svc.comosvc.comosvc_inference import ComoSVCInference
from models.svc.transformer.transformer_inference import TransformerInference
from utils.util import load_config
from utils.audio_slicer import split_audio, merge_segments_encodec
from processors import acoustic_extractor, content_extractor
def build_inference(args, cfg, infer_type="from_dataset"):
supported_inference = {
"DiffWaveNetSVC": DiffusionInference,
"DiffComoSVC": ComoSVCInference,
"TransformerSVC": TransformerInference,
}
inference_class = supported_inference[cfg.model_type]
return inference_class(args, cfg, infer_type)
def prepare_for_audio_file(args, cfg, num_workers=1):
preprocess_path = cfg.preprocess.processed_dir
audio_name = cfg.inference.source_audio_name
temp_audio_dir = os.path.join(preprocess_path, audio_name)
### eval file
t = time.time()
eval_file = prepare_source_eval_file(cfg, temp_audio_dir, audio_name)
args.source = eval_file
with open(eval_file, "r") as f:
metadata = json.load(f)
print("Prepare for meta eval data: {:.1f}s".format(time.time() - t))
### acoustic features
t = time.time()
acoustic_extractor.extract_utt_acoustic_features_serial(
metadata, temp_audio_dir, cfg
)
acoustic_extractor.cal_mel_min_max(
dataset=audio_name, output_path=preprocess_path, cfg=cfg, metadata=metadata
)
acoustic_extractor.cal_pitch_statistics_svc(
dataset=audio_name, output_path=preprocess_path, cfg=cfg, metadata=metadata
)
print("Prepare for acoustic features: {:.1f}s".format(time.time() - t))
### content features
t = time.time()
content_extractor.extract_utt_content_features_dataloader(
cfg, metadata, num_workers
)
print("Prepare for content features: {:.1f}s".format(time.time() - t))
return args, cfg, temp_audio_dir
def merge_for_audio_segments(audio_files, args, cfg):
audio_name = cfg.inference.source_audio_name
target_singer_name = args.target_singer
merge_segments_encodec(
wav_files=audio_files,
fs=cfg.preprocess.sample_rate,
output_path=os.path.join(
args.output_dir, "{}_{}.wav".format(audio_name, target_singer_name)
),
overlap_duration=cfg.inference.segments_overlap_duration,
)
for tmp_file in audio_files:
os.remove(tmp_file)
def prepare_source_eval_file(cfg, temp_audio_dir, audio_name):
"""
Prepare the eval file (json) for an audio
"""
audio_chunks_results = split_audio(
wav_file=cfg.inference.source_audio_path,
target_sr=cfg.preprocess.sample_rate,
output_dir=os.path.join(temp_audio_dir, "wavs"),
max_duration_of_segment=cfg.inference.segments_max_duration,
overlap_duration=cfg.inference.segments_overlap_duration,
)
metadata = []
for i, res in enumerate(audio_chunks_results):
res["index"] = i
res["Dataset"] = audio_name
res["Singer"] = audio_name
res["Uid"] = "{}_{}".format(audio_name, res["Uid"])
metadata.append(res)
eval_file = os.path.join(temp_audio_dir, "eval.json")
with open(eval_file, "w") as f:
json.dump(metadata, f, indent=4, ensure_ascii=False, sort_keys=True)
return eval_file
def cuda_relevant(deterministic=False):
torch.cuda.empty_cache()
# TF32 on Ampere and above
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.enabled = True
torch.backends.cudnn.allow_tf32 = True
# Deterministic
torch.backends.cudnn.deterministic = deterministic
torch.backends.cudnn.benchmark = not deterministic
torch.use_deterministic_algorithms(deterministic)
def infer(args, cfg, infer_type):
# Build inference
t = time.time()
trainer = build_inference(args, cfg, infer_type)
print("Model Init: {:.1f}s".format(time.time() - t))
# Run inference
t = time.time()
output_audio_files = trainer.inference()
print("Model inference: {:.1f}s".format(time.time() - t))
return output_audio_files
def build_parser():
r"""Build argument parser for inference.py.
Anything else should be put in an extra config YAML file.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
type=str,
required=True,
help="JSON/YAML file for configurations.",
)
parser.add_argument(
"--acoustics_dir",
type=str,
help="Acoustics model checkpoint directory. If a directory is given, "
"search for the latest checkpoint dir in the directory. If a specific "
"checkpoint dir is given, directly load the checkpoint.",
)
parser.add_argument(
"--vocoder_dir",
type=str,
required=True,
help="Vocoder checkpoint directory. Searching behavior is the same as "
"the acoustics one.",
)
parser.add_argument(
"--target_singer",
type=str,
required=True,
help="convert to a specific singer (e.g. --target_singers singer_id).",
)
parser.add_argument(
"--trans_key",
default=0,
help="0: no pitch shift; autoshift: pitch shift; int: key shift.",
)
parser.add_argument(
"--source",
type=str,
default="source_audio",
help="Source audio file or directory. If a JSON file is given, "
"inference from dataset is applied. If a directory is given, "
"inference from all wav/flac/mp3 audio files in the directory is applied. "
"Default: inference from all wav/flac/mp3 audio files in ./source_audio",
)
parser.add_argument(
"--output_dir",
type=str,
default="conversion_results",
help="Output directory. Default: ./conversion_results",
)
parser.add_argument(
"--log_level",
type=str,
default="warning",
help="Logging level. Default: warning",
)
parser.add_argument(
"--keep_cache",
action="store_true",
default=True,
help="Keep cache files. Only applicable to inference from files.",
)
parser.add_argument(
"--diffusion_inference_steps",
type=int,
default=1000,
help="Number of inference steps. Only applicable to diffusion inference.",
)
return parser
def main(args_list):
### Parse arguments and config
args = build_parser().parse_args(args_list)
cfg = load_config(args.config)
# CUDA settings
cuda_relevant()
if os.path.isdir(args.source):
### Infer from file
# Get all the source audio files (.wav, .flac, .mp3)
source_audio_dir = args.source
audio_list = []
for suffix in ["wav", "flac", "mp3"]:
audio_list += glob.glob(
os.path.join(source_audio_dir, "**/*.{}".format(suffix)), recursive=True
)
print("There are {} source audios: ".format(len(audio_list)))
# Infer for every file as dataset
output_root_path = args.output_dir
for audio_path in tqdm(audio_list):
audio_name = audio_path.split("/")[-1].split(".")[0]
args.output_dir = os.path.join(output_root_path, audio_name)
print("\n{}\nConversion for {}...\n".format("*" * 10, audio_name))
cfg.inference.source_audio_path = audio_path
cfg.inference.source_audio_name = audio_name
cfg.inference.segments_max_duration = 10.0
cfg.inference.segments_overlap_duration = 1.0
# Prepare metadata and features
args, cfg, cache_dir = prepare_for_audio_file(args, cfg)
# Infer from file
output_audio_files = infer(args, cfg, infer_type="from_file")
# Merge the split segments
merge_for_audio_segments(output_audio_files, args, cfg)
# Keep or remove caches
if not args.keep_cache:
os.removedirs(cache_dir)
else:
### Infer from dataset
infer(args, cfg, infer_type="from_dataset")
if __name__ == "__main__":
main()
|