File size: 7,019 Bytes
cd03576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6cb138
 
 
 
 
 
 
 
 
 
 
 
cd03576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import torch
import torch.nn as nn
import math
from torch.nn import functional as F


class StyleAdaptiveLayerNorm(nn.Module):
    def __init__(self, normalized_shape, eps=1e-5):
        super().__init__()
        self.in_dim = normalized_shape
        self.norm = nn.LayerNorm(self.in_dim, eps=eps, elementwise_affine=False)
        self.style = nn.Linear(self.in_dim, self.in_dim * 2)
        self.style.bias.data[: self.in_dim] = 1
        self.style.bias.data[self.in_dim :] = 0

    def forward(self, x, condition):
        # x: (B, T, d); condition: (B, T, d)

        style = self.style(torch.mean(condition, dim=1, keepdim=True))

        gamma, beta = style.chunk(2, -1)

        out = self.norm(x)

        out = gamma * out + beta
        return out


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout, max_len=5000):
        super().__init__()

        self.dropout = dropout
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
        )
        pe = torch.zeros(max_len, 1, d_model)
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x + self.pe[: x.size(0)]
        return F.dropout(x, self.dropout, training=self.training)


class TransformerFFNLayer(nn.Module):
    def __init__(
        self, encoder_hidden, conv_filter_size, conv_kernel_size, encoder_dropout
    ):
        super().__init__()

        self.encoder_hidden = encoder_hidden
        self.conv_filter_size = conv_filter_size
        self.conv_kernel_size = conv_kernel_size
        self.encoder_dropout = encoder_dropout

        self.ffn_1 = nn.Conv1d(
            self.encoder_hidden,
            self.conv_filter_size,
            self.conv_kernel_size,
            padding=self.conv_kernel_size // 2,
        )
        self.ffn_1.weight.data.normal_(0.0, 0.02)
        self.ffn_2 = nn.Linear(self.conv_filter_size, self.encoder_hidden)
        self.ffn_2.weight.data.normal_(0.0, 0.02)

    def forward(self, x):
        # x: (B, T, d)
        x = self.ffn_1(x.permute(0, 2, 1)).permute(
            0, 2, 1
        )  # (B, T, d) -> (B, d, T) -> (B, T, d)
        x = F.relu(x)
        x = F.dropout(x, self.encoder_dropout, training=self.training)
        x = self.ffn_2(x)
        return x


class TransformerEncoderLayer(nn.Module):
    def __init__(
        self,
        encoder_hidden,
        encoder_head,
        conv_filter_size,
        conv_kernel_size,
        encoder_dropout,
        use_cln,
    ):
        super().__init__()
        self.encoder_hidden = encoder_hidden
        self.encoder_head = encoder_head
        self.conv_filter_size = conv_filter_size
        self.conv_kernel_size = conv_kernel_size
        self.encoder_dropout = encoder_dropout
        self.use_cln = use_cln

        if not self.use_cln:
            self.ln_1 = nn.LayerNorm(self.encoder_hidden)
            self.ln_2 = nn.LayerNorm(self.encoder_hidden)
        else:
            self.ln_1 = StyleAdaptiveLayerNorm(self.encoder_hidden)
            self.ln_2 = StyleAdaptiveLayerNorm(self.encoder_hidden)

        self.self_attn = nn.MultiheadAttention(
            self.encoder_hidden, self.encoder_head, batch_first=True
        )

        self.ffn = TransformerFFNLayer(
            self.encoder_hidden,
            self.conv_filter_size,
            self.conv_kernel_size,
            self.encoder_dropout,
        )

    def forward(self, x, key_padding_mask, conditon=None):
        # x: (B, T, d); key_padding_mask: (B, T), mask is 0; condition: (B, T, d)

        # self attention
        residual = x
        if self.use_cln:
            x = self.ln_1(x, conditon)
        else:
            x = self.ln_1(x)

        if key_padding_mask != None:
            key_padding_mask_input = ~(key_padding_mask.bool())
        else:
            key_padding_mask_input = None
        x, _ = self.self_attn(
            query=x, key=x, value=x, key_padding_mask=key_padding_mask_input
        )
        x = F.dropout(x, self.encoder_dropout, training=self.training)
        x = residual + x

        # ffn
        residual = x
        if self.use_cln:
            x = self.ln_2(x, conditon)
        else:
            x = self.ln_2(x)
        x = self.ffn(x)
        x = residual + x

        return x


class TransformerEncoder(nn.Module):
    def __init__(
        self,
        enc_emb_tokens=None,
        encoder_layer=4,
        encoder_hidden=256,
        encoder_head=4,
        conv_filter_size=1024,
        conv_kernel_size=5,
        encoder_dropout=0.1,
        use_cln=False,
        cfg=None,
    ):
        super().__init__()

        self.encoder_layer = (
            encoder_layer if encoder_layer is not None else cfg.encoder_layer
        )
        self.encoder_hidden = (
            encoder_hidden if encoder_hidden is not None else cfg.encoder_hidden
        )
        self.encoder_head = (
            encoder_head if encoder_head is not None else cfg.encoder_head
        )
        self.conv_filter_size = (
            conv_filter_size if conv_filter_size is not None else cfg.conv_filter_size
        )
        self.conv_kernel_size = (
            conv_kernel_size if conv_kernel_size is not None else cfg.conv_kernel_size
        )
        self.encoder_dropout = (
            encoder_dropout if encoder_dropout is not None else cfg.encoder_dropout
        )
        self.use_cln = use_cln if use_cln is not None else cfg.use_cln

        if enc_emb_tokens != None:
            self.use_enc_emb = True
            self.enc_emb_tokens = enc_emb_tokens
        else:
            self.use_enc_emb = False

        self.position_emb = PositionalEncoding(
            self.encoder_hidden, self.encoder_dropout
        )

        self.layers = nn.ModuleList([])
        self.layers.extend(
            [
                TransformerEncoderLayer(
                    self.encoder_hidden,
                    self.encoder_head,
                    self.conv_filter_size,
                    self.conv_kernel_size,
                    self.encoder_dropout,
                    self.use_cln,
                )
                for i in range(self.encoder_layer)
            ]
        )

        if self.use_cln:
            self.last_ln = StyleAdaptiveLayerNorm(self.encoder_hidden)
        else:
            self.last_ln = nn.LayerNorm(self.encoder_hidden)

    def forward(self, x, key_padding_mask, condition=None):
        if len(x.shape) == 2 and self.use_enc_emb:
            x = self.enc_emb_tokens(x)
            x = self.position_emb(x)
        else:
            x = self.position_emb(x)  # (B, T, d)

        for layer in self.layers:
            x = layer(x, key_padding_mask, condition)

        if self.use_cln:
            x = self.last_ln(x, condition)
        else:
            x = self.last_ln(x)

        return x