File size: 7,512 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torchaudio
import numpy as np
import time
from .valle_ar_trainer import ValleARTrainer, make_pad_mask


class ValleNARTrainer(ValleARTrainer):
    def __init__(self, args=None, cfg=None):
        super().__init__(args, cfg)
        print("simple NAR")
        self.top1_accuracies = {
            1: [],
            2: [],
            3: [],
            4: [],
            5: [],
            6: [],
            7: [],
        }
        self.top5_accuracies = {
            1: [],
            2: [],
            3: [],
            4: [],
            5: [],
            6: [],
            7: [],
        }
        self.top10_accuracies = {
            1: [],
            2: [],
            3: [],
            4: [],
            5: [],
            6: [],
            7: [],
        }

    def _build_model(self):
        from .valle_nar import ValleNAR

        return ValleNAR(**self.cfg.model)

    def _train_step(self, batch):
        # inference codec
        """Returns: dict('speech', 'speech_len', 'phone_ids', 'phone_lens')
        speech: [B, T]
        speech_len: [B]
        phone_ids: [B, T]
        phone_lens: [B]
        """
        device = self.accelerator.device
        for k, v in batch.items():
            if isinstance(v, torch.Tensor):
                batch[k] = v.to(device)

        with torch.no_grad():
            if self.cfg.use_speechtokenizer:
                # Extract discrete codes from SpeechTokenizer
                # 16k
                vq_id = self.codec_encoder.encode(
                    batch["speech"].unsqueeze(1)
                )  # [B,T] -> (n_q, B, T)
                # RVQ_1 = codes[:1, :, :] # Contain content info, can be considered as semantic tokens
                # RVQ_supplement = codes[1:, :, :] # Contain timbre info, complete info lost by the first quantizer
                # Concatenating semantic tokens (RVQ_1) and supplementary timbre tokens and then decoding
                # wav = self.codec_encoder.decode(vq_id)
                # torchaudio.save('a.wav', wav[0].cpu(), 16000)

                # # Decoding from RVQ-i:j tokens from the ith quantizers to the jth quantizers
                # wav = model.decode(codes[i: (j + 1)], st=i)
            else:
                # using encodec, 24k
                vq_id = self.codec_encoder.encode(batch["speech"].unsqueeze(1))
                vq_id = torch.cat([encoded[0] for encoded in vq_id], dim=-1).transpose(
                    0, 1
                )

            # recovered_audio = self.codec_decoder(vq_emb, vq=False)
            # torchaudio.save('a.wav', recovered_audio[0], 16000)
            # vq_id: [8, B, T//320]
            batch["speech"] = vq_id
        batch["speech_len"] = batch["speech_len"] // 320  # our codec downsamples 320x
        assert batch["speech_len"].max() <= batch["speech"].shape[-1]

        phone_mask = 1 - make_pad_mask(
            batch["phone_lens"], max_len=batch["phone_ids"].size(1), left_pad=False
        ).to(torch.long)
        speech_mask = 1 - make_pad_mask(
            batch["speech_len"], max_len=batch["speech"].size(-1)
        ).to(torch.long)

        np.random.seed(int(time.time()) - 5 * self.accelerator.process_index)

        if hasattr(self.cfg.train, "dropout"):
            dropout = self.cfg.train.dropout
        else:
            dropout = 0.0

        out = self.model(
            phone_ids=batch["phone_ids"],
            phone_mask=phone_mask,
            target_ids=batch["speech"],
            target_mask=speech_mask,
            dropout=dropout,
        )
        loss = out.loss

        self.accelerator.log(
            {f"Train/NAR L{out.target_quantization_layer} Top1 acc": out.top1_acc},
            step=self.step,
        )
        self.accelerator.log(
            {f"Train/NAR L{out.target_quantization_layer} Top5 acc": out.top5_acc},
            step=self.step,
        )
        self.accelerator.log(
            {f"Train/NAR L{out.target_quantization_layer} Top10 acc": out.top10_acc},
            step=self.step,
        )

        # if hasattr(out, 'top1_acc'):
        #     idx = out.target_quantization_layer
        #     self.top1_accuracies[idx].append(out.top1_acc)
        #     self.top5_accuracies[idx].append(out.top5_acc)
        #     self.top10_accuracies[idx].append(out.top10_acc)
        #     if len(self.top1_accuracies[idx]) >= 160:
        #         breakpoint()
        # if self.accelerator.is_main_process:
        #     print(loss)
        return loss

    def _test_step(self, batch):
        # inference codec
        """Returns: dict('speech', 'speech_len', 'phone_ids', 'phone_lens')
        speech: [B, T]
        speech_len: [B]
        phone_ids: [B, T]
        phone_lens: [B]
        """
        import torchaudio

        device = self.accelerator.device
        for k, v in batch.items():
            if isinstance(v, torch.Tensor):
                batch[k] = v.to(device)
        with torch.no_grad():
            if self.cfg.use_speechtokenizer:
                # Extract discrete codes from SpeechTokenizer
                # 16k
                vq_id = self.codec_encoder.encode(
                    batch["speech"].unsqueeze(1)
                )  # [B,1,T] -> (n_q, B, T)
                # Concatenating semantic tokens (RVQ_1) and supplementary timbre tokens and then decoding
                # wav = self.codec_encoder.decode(vq_id)
                # torchaudio.save('a.wav', wav[0].cpu(), 16000)

            else:
                vq_id = self.codec_encoder.encode(batch["speech"].unsqueeze(1))
                vq_id = torch.cat([encoded[0] for encoded in vq_id], dim=-1).transpose(
                    0, 1
                )
            # recovered_audio = self.codec_encoder.decode([(vq_id.transpose(0,1), None)])
            # recovered_audio = self.codec_decoder(vq_emb, vq=False)
            # torchaudio.save('a.wav', recovered_audio[0], 16000)
            # vq_id: [8, B, T//200]

            # vq_emb = self.codec_decoder.quantizer.vq2emb(vq=vq_id[:1], n_quantizers=1)
            # recovered_audio = self.codec_decoder(vq_emb, vq=False)
            # recovered_audio.shape: torch.Size([1, 1, 50200])

            batch["speech"] = vq_id

            # save gt
            if self.cfg.use_speechtokenizer:
                recovered_audio = self.codec_encoder.decode(vq_id)
            else:
                recovered_audio = self.codec_encoder.decode(
                    [(vq_id.transpose(0, 1), None)]
                )
            torchaudio.save("gt.wav", recovered_audio[0].cpu(), 16000)
            self.model.eval()
            out_vq_ids = self.model.sample_hf(
                phone_ids=batch["phone_ids"][:1],
                prompt_ids=batch["speech"][:, :1, :150],
                first_stage_ids=batch["speech"][0, :1, 150:],
            )
            # breakpoint()
            # out_vq_ids = torch.cat([batch['speech'][:, :225], out_vq_ids], dim=1)

            # reconstruct form tokens
            if self.cfg.use_speechtokenizer:
                recovered_audio = self.codec_encoder.decode(out_vq_ids)
            else:
                recovered_audio = self.codec_encoder.decode(
                    [(out_vq_ids.transpose(0, 1)[:1], None)]
                )
            torchaudio.save("a.wav", recovered_audio[0].cpu(), 16000)
            breakpoint()