File size: 10,290 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#


import torch

'''
def subsequent_mask(
        size: int,
        device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
    """Create mask for subsequent steps (size, size).

    This mask is used only in decoder which works in an auto-regressive mode.
    This means the current step could only do attention with its left steps.

    In encoder, fully attention is used when streaming is not necessary and
    the sequence is not long. In this  case, no attention mask is needed.

    When streaming is need, chunk-based attention is used in encoder. See
    subsequent_chunk_mask for the chunk-based attention mask.

    Args:
        size (int): size of mask
        str device (str): "cpu" or "cuda" or torch.Tensor.device
        dtype (torch.device): result dtype

    Returns:
        torch.Tensor: mask

    Examples:
        >>> subsequent_mask(3)
        [[1, 0, 0],
         [1, 1, 0],
         [1, 1, 1]]
    """
    ret = torch.ones(size, size, device=device, dtype=torch.bool)
    return torch.tril(ret)
'''


def subsequent_mask(
    size: int,
    device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
    """Create mask for subsequent steps (size, size).

    This mask is used only in decoder which works in an auto-regressive mode.
    This means the current step could only do attention with its left steps.

    In encoder, fully attention is used when streaming is not necessary and
    the sequence is not long. In this  case, no attention mask is needed.

    When streaming is need, chunk-based attention is used in encoder. See
    subsequent_chunk_mask for the chunk-based attention mask.

    Args:
        size (int): size of mask
        str device (str): "cpu" or "cuda" or torch.Tensor.device
        dtype (torch.device): result dtype

    Returns:
        torch.Tensor: mask

    Examples:
        >>> subsequent_mask(3)
        [[1, 0, 0],
         [1, 1, 0],
         [1, 1, 1]]
    """
    arange = torch.arange(size, device=device)
    mask = arange.expand(size, size)
    arange = arange.unsqueeze(-1)
    mask = mask <= arange
    return mask


def subsequent_chunk_mask(
    size: int,
    chunk_size: int,
    num_left_chunks: int = -1,
    device: torch.device = torch.device("cpu"),
) -> torch.Tensor:
    """Create mask for subsequent steps (size, size) with chunk size,
       this is for streaming encoder

    Args:
        size (int): size of mask
        chunk_size (int): size of chunk
        num_left_chunks (int): number of left chunks
            <0: use full chunk
            >=0: use num_left_chunks
        device (torch.device): "cpu" or "cuda" or torch.Tensor.device

    Returns:
        torch.Tensor: mask

    Examples:
        >>> subsequent_chunk_mask(4, 2)
        [[1, 1, 0, 0],
         [1, 1, 0, 0],
         [1, 1, 1, 1],
         [1, 1, 1, 1]]
    """
    ret = torch.zeros(size, size, device=device, dtype=torch.bool)
    for i in range(size):
        if num_left_chunks < 0:
            start = 0
        else:
            start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
        ending = min((i // chunk_size + 1) * chunk_size, size)
        ret[i, start:ending] = True
    return ret


def add_optional_chunk_mask(
    xs: torch.Tensor,
    masks: torch.Tensor,
    use_dynamic_chunk: bool,
    use_dynamic_left_chunk: bool,
    decoding_chunk_size: int,
    static_chunk_size: int,
    num_decoding_left_chunks: int,
):
    """Apply optional mask for encoder.

    Args:
        xs (torch.Tensor): padded input, (B, L, D), L for max length
        mask (torch.Tensor): mask for xs, (B, 1, L)
        use_dynamic_chunk (bool): whether to use dynamic chunk or not
        use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
            training.
        decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
            0: default for training, use random dynamic chunk.
            <0: for decoding, use full chunk.
            >0: for decoding, use fixed chunk size as set.
        static_chunk_size (int): chunk size for static chunk training/decoding
            if it's greater than 0, if use_dynamic_chunk is true,
            this parameter will be ignored
        num_decoding_left_chunks: number of left chunks, this is for decoding,
            the chunk size is decoding_chunk_size.
            >=0: use num_decoding_left_chunks
            <0: use all left chunks

    Returns:
        torch.Tensor: chunk mask of the input xs.
    """
    # Whether to use chunk mask or not
    if use_dynamic_chunk:
        max_len = xs.size(1)
        if decoding_chunk_size < 0:
            chunk_size = max_len
            num_left_chunks = -1
        elif decoding_chunk_size > 0:
            chunk_size = decoding_chunk_size
            num_left_chunks = num_decoding_left_chunks
        else:
            # chunk size is either [1, 25] or full context(max_len).
            # Since we use 4 times subsampling and allow up to 1s(100 frames)
            # delay, the maximum frame is 100 / 4 = 25.
            chunk_size = torch.randint(1, max_len, (1,)).item()
            num_left_chunks = -1
            if chunk_size > max_len // 2:
                chunk_size = max_len
            else:
                chunk_size = chunk_size % 25 + 1
                if use_dynamic_left_chunk:
                    max_left_chunks = (max_len - 1) // chunk_size
                    num_left_chunks = torch.randint(0, max_left_chunks, (1,)).item()
        chunk_masks = subsequent_chunk_mask(
            xs.size(1), chunk_size, num_left_chunks, xs.device
        )  # (L, L)
        chunk_masks = chunk_masks.unsqueeze(0)  # (1, L, L)
        chunk_masks = masks & chunk_masks  # (B, L, L)
    elif static_chunk_size > 0:
        num_left_chunks = num_decoding_left_chunks
        chunk_masks = subsequent_chunk_mask(
            xs.size(1), static_chunk_size, num_left_chunks, xs.device
        )  # (L, L)
        chunk_masks = chunk_masks.unsqueeze(0)  # (1, L, L)
        chunk_masks = masks & chunk_masks  # (B, L, L)
    else:
        chunk_masks = masks
    return chunk_masks


def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
    """Make mask tensor containing indices of padded part.

    See description of make_non_pad_mask.

    Args:
        lengths (torch.Tensor): Batch of lengths (B,).
    Returns:
        torch.Tensor: Mask tensor containing indices of padded part.

    Examples:
        >>> lengths = [5, 3, 2]
        >>> make_pad_mask(lengths)
        masks = [[0, 0, 0, 0 ,0],
                 [0, 0, 0, 1, 1],
                 [0, 0, 1, 1, 1]]
    """
    batch_size = lengths.size(0)
    max_len = max_len if max_len > 0 else lengths.max().item()
    seq_range = torch.arange(0, max_len, dtype=torch.int64, device=lengths.device)
    seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
    seq_length_expand = lengths.unsqueeze(-1)
    mask = seq_range_expand >= seq_length_expand
    return mask


def make_non_pad_mask(lengths: torch.Tensor) -> torch.Tensor:
    """Make mask tensor containing indices of non-padded part.

    The sequences in a batch may have different lengths. To enable
    batch computing, padding is need to make all sequence in same
    size. To avoid the padding part pass value to context dependent
    block such as attention or convolution , this padding part is
    masked.

    This pad_mask is used in both encoder and decoder.

    1 for non-padded part and 0 for padded part.

    Args:
        lengths (torch.Tensor): Batch of lengths (B,).
    Returns:
        torch.Tensor: mask tensor containing indices of padded part.

    Examples:
        >>> lengths = [5, 3, 2]
        >>> make_non_pad_mask(lengths)
        masks = [[1, 1, 1, 1 ,1],
                 [1, 1, 1, 0, 0],
                 [1, 1, 0, 0, 0]]
    """
    return ~make_pad_mask(lengths)


def mask_finished_scores(score: torch.Tensor, flag: torch.Tensor) -> torch.Tensor:
    """
    If a sequence is finished, we only allow one alive branch. This function
    aims to give one branch a zero score and the rest -inf score.

    Args:
        score (torch.Tensor): A real value array with shape
            (batch_size * beam_size, beam_size).
        flag (torch.Tensor): A bool array with shape
            (batch_size * beam_size, 1).

    Returns:
        torch.Tensor: (batch_size * beam_size, beam_size).
    """
    beam_size = score.size(-1)
    zero_mask = torch.zeros_like(flag, dtype=torch.bool)
    if beam_size > 1:
        unfinished = torch.cat((zero_mask, flag.repeat([1, beam_size - 1])), dim=1)
        finished = torch.cat((flag, zero_mask.repeat([1, beam_size - 1])), dim=1)
    else:
        unfinished = zero_mask
        finished = flag
    score.masked_fill_(unfinished, -float("inf"))
    score.masked_fill_(finished, 0)
    return score


def mask_finished_preds(
    pred: torch.Tensor, flag: torch.Tensor, eos: int
) -> torch.Tensor:
    """
    If a sequence is finished, all of its branch should be <eos>

    Args:
        pred (torch.Tensor): A int array with shape
            (batch_size * beam_size, beam_size).
        flag (torch.Tensor): A bool array with shape
            (batch_size * beam_size, 1).

    Returns:
        torch.Tensor: (batch_size * beam_size).
    """
    beam_size = pred.size(-1)
    finished = flag.repeat([1, beam_size])
    return pred.masked_fill_(finished, eos)